Presentation is loading. Please wait.

Presentation is loading. Please wait.

Тяжелые ядра в космосе – источник радиационной опасности вблизи Земли и в межпланетном пространстве Heavy Nuclei in Space – the Source of Danger in the.

Similar presentations


Presentation on theme: "Тяжелые ядра в космосе – источник радиационной опасности вблизи Земли и в межпланетном пространстве Heavy Nuclei in Space – the Source of Danger in the."— Presentation transcript:

1 Тяжелые ядра в космосе – источник радиационной опасности вблизи Земли и в межпланетном пространстве Heavy Nuclei in Space – the Source of Danger in the Vicinity of the Earth and in the Interplanetary Space Mikhail Panasyuk Moscow State University Space Weather Effects on Humans: in Space and on Earth International Conference Space Research Institute Moscow, Russia June 4-8, 2012

2 Apollo –11 N. Armstrong B. Aldrin M. Collins GCR (Fe) The first “visualization” of HZE

3 Absorbed dose 0,5 Zv Electrons Nuclei HZE particles effects

4 ## SEE SEE Years Minimum of SA Maximum of SA Одиночные сбои и поток ГКЛ Single Events Effects HZE particles impact on microchips

5 HZE particles in the Earth’s Environment

6 Внешний пояс - р до ~ МэВ - е до нескольких МэВ Внутренний пояс - р до сотен МэВ - е до нескольких МэВ ~7Rз The Earth’s Radiation Belts

7 Потоки электронов и протонов различных энергий в плоскости геомагнитного экватора. R - расстояние от центра Земли, выраженное в радиусах Земли. Стабильный пояс электронов с E e > 20 МэВ выделен жирной линией

8 Energy spectra of cosmic radiation Solar wind (H) Solar energetic particles Galactic and extragalactic cosmic rays (H) lg E (eV/nucl) lg I 1 MeVn 6 1 GeVn 1 TeVn 1keV/n Radiation belts

9 Низкие высоты Low altitudes (LEO)

10 Радиационное окружение Земли ISS 400 km

11 South Atlantic Anomaly h=500km, 1970, B model JSFC12/66(1970) AE8max Магнитное поле Частицы h = 400 km

12 ЮАА Широта, град Долгота, град SEE in the SAA

13 протоны, >40 MэВ W

14 Solar cycle dependence. Proton flux year Atmospheric density

15 Secular Variations of Geomagnetic Field (Model IGRF) SAA: magnetic field secular variations Magnetic field become weaker ( at h = const) - SAA moving to the west

16 ~ 25 µ CR track Interection region Sensitive region ~ 5 µ neutrons p α Mg Shielding Semiconductor chip

17 Solar neutrons Local neutrons Albedo neutrons GCR protons Neutron Environment

18 Secondary protons&neutrons

19 Local neutrons generation vs S/C mass МИР

20 Neutron dose equivalent(μSv/h) Neutron dose equivalent rate was estimated using the energy spectrum with the ICRP-74 coefficient. Neutron dose equivalent (Goka et al) (From March 23 to July 7, All orbit)

21 км км км Спутник APEX, эллиптическая орбита Altitude dependence of SEE

22 SEP

23 Solar wind (H) Solar cosmic rays Galactic cosmic rays lgE (эВ/нукл) Поток частиц, отн.ед 1 МэВ/нукл 6 1 ГэВ/ нукл1 ТэВ/ нукл1кэВ/нукл Solar Energetic Particles

24 SEE during SEP’s events and modeling of SEE

25 SEE at LEO

26 How many HZE particles in SEP events?

27 HZE abundance in SEP Nymmik, 2012,private communication

28 HZE abundance in SEP Abundance of HZE particles on the tail of SEP’s events is unerestimated? Nymmik, 2012,private communication

29 «Нейтронный отклик» солнечных вспышек “Neutron’s response” of solar flares

30 Neutron dose equivalent(μSv/h) We have investigated the neutron dose equivalent inside the ISS on the influence of solar flare. Neutron dose equivalent (For 24 hours from 12(UT) on April 15) Animation\animation.htm

31 Galactic cosmic rays Галактические космические лучи

32 GCR modulation ?

33 Instead of conclusions PROBLEMS (just a sketch)

34 PROBLEMS 1. Limitation of knowledge to estimate the real risk

35 Роль фрагментов ядерных реакций p +Si  Продукты ядерного взаимодействия протонов КИ с материалом бортовой электроники генерируют с электронно- дырочные пары и дефекты, приводящие к сбою электроники

36 ## SEE vs LTE

37 However… Результаты испытаний HXRHPPC на ТЗЧ Lintz et al, “ Single Event Effects Hardening and Characterization of Honeywell’s RHPPC Processor Integrated Circuit”

38 Rat’s expedition to Mars Rat’s behavior is changing after 3 month’s of HZE exposure !

39 Expedition to Mars Do we need one way ticket?

40 PROBLEMS 2. Limitation of on ground facilities for modeling of space environment

41 Neutrons in space and in the Earth’s atmosphere

42

43 How to minimize risk from HZE? Electronics Onground space qualification tests (certification) with using of accelerator’s facilities – just a black hole for funds What to do ? - To combine design/manufacturing process with radiation testing - To imply special soft/scheme/construction decisions to minimize SEE - Planning of missions

44 ЮАА Широта, град Долгота, град Одиночные сбои в ЮАА Planning of missions Spacecraft is a robot, but with elements a manual management by people

45

46 How to minimize risk from HZE? Humans - To combine design/manufacturing process with radiation testing - To imply special soft/scheme/construction decisions to minimize SEE - Planning of missions, new estimation of risks

47 How to minimize risk from HZE? Humans Planning of missions Probably, we are on a way of developing temporal limitation for long- duration space missions on concept of new risk’s estimation Time – the only real shield against HZE particles for human’s body in space

48 Thank you


Download ppt "Тяжелые ядра в космосе – источник радиационной опасности вблизи Земли и в межпланетном пространстве Heavy Nuclei in Space – the Source of Danger in the."

Similar presentations


Ads by Google