Download presentation

Presentation is loading. Please wait.

Published byJasmine Reed Modified about 1 year ago

1
Secular Perturbations -Eccentric and Mean anomalies -Kepler’s equation -f,g functions -Universal variables for hyperbolic and eccentric orbits -Disturbing function -Low eccentricity expansions for Disturbing function -Secular terms at low eccentricity -Precession of angle of perihelion -Apsidal resonance -Pericenter glow models for eccentric holes in circumstellar disks ( Created by: Zsolt Sandor & Peter Klagyivik, Eötvös Lorand University)

2
r a f = true anomaly f Ellipse b center of ellipse Sun is focal point b=semi-minor axis a=semi-major axis

3
E r a E = Eccentric anomaly f = true anomaly f Orbit from center of ellipse Ellipse b ae

4
Relationship between Eccentric, True and Mean anomalies Using expressions for x,y in terms of true and Eccentric anomalies we find that So if you know E you know f and can find position in orbit Write dr/dt in terms of n, r, a, e Then replace dr/dt with function depending on E, dE/dt

5
Mean Anomaly and Kepler’s equation New angle M defined such that or Integrate dE/dt finding Kepler’s equation Must be solved to integrate orbit in time. The mean anomaly is not an angle defined on the orbital plane It is an angle that advances steadily in time It is related to the azimuthal angle in the orbital plane, for a circular orbit, the two are the same and f=M

6
– Change t, increase M. – Compute E numerically using Kepler’s equation – Compute f using relation between E and f – Rotate to take into account argument of perihelion – Calculate x,y in plane of orbit – Rotate two more times for inclination and longitude of ascending node to final Cartesian position Kepler’s equation Must be solved to integrate orbit in time. Procedure for integrating orbit or for converting orbital elements to a Cartesian position:

7
Inclination and longitude of ascending node Sign of terms depends on sign of h z. I inclination. – retrograde orbits have π/2< I< π – prograde have 0< I< π/2 Ω longitude of ascending node, where orbit crosses ecliptic Argument of pericenter ω is with respect to the line of nodes (where orbit crosses ecliptic) h angular momentum vector

8
Orbit in space line of nodes: intersection of orbital plane and reference plane (ecliptic) Longitude of ascending node Ω: angle between line of nodes (ascending side) and reference line (vernal equinox) ω “argument of pericenter” is not exactly the same thing as we discussed before ϖ – longitude of pericenter. ω is not measured in the ecliptic. ϖ =Ω+ω but these angles not in a plane unless I =0 Anomaly : in orbital plane and w.r.t. pericenter Longitude: in ecliptic w.r.t. vernal equinox Argument: some other angle

9
Orbit in space Rotations In plane of orbit by argument of pericenter ω in (x,y) plane In (y,z) plane by inclination I In (x,y) plane by longitude of ascending node Ω 3 rotations required to compute Cartesian coordinates given orbital elements

10
Cartesian to orbital elements To convert from Cartesian coordinates to Orbital elements: – Compute a,e using energy and angular momentum – Compute inclination and longitude of ascending node from components of angular momentum vector – From current radius and velocity compute f – Calculate E from f – Calculate M from numerical solution of Kepler’s equation – Calculate longitude of perihelion from angle of line of nodes in plane of orbit

11
The angular momentum vector relation between inclination, longitude of ascending node and angular momentum. Convention is to flip signs of h x,h y if h z is negative Force component perpendicular to orbital plane component in orbital plane perpendicular to r component along radius orthogonal coordinate system

12
Torque F r contributes no torque To vary |h| a torque in z direction is need, only depends on F θ - only forces in the plane vary eccentricity To vary direction of h a force in direction of z is needed instantaneous variations Often integrated over orbit to estimate precession rate

13
f and g functions Position and velocity at a later time can be written in terms of position and velocity at an earlier time. Numerically more efficient as full orbital solution not required.

14
Differential form of Kepler’s equation Procedure for computing f,g functions Compute a, e from energy and angular momentum. Compute E 0 from position Compute ΔE by solving numerically the differential form of Kepler’s equation. Compute f,g, find new r. Compute One of these could be computed from the other 3 using conservation of angular momentum Subtract Kepler’s equation at two different times to find: )

15
Universal variables Desirable to have integration routines that don’t require testing to see if orbit is bound. Converting from elliptic to hyperbolic orbits is often of matter of substituting sin, cos for sinh, cosh Described by Prussing and Conway in their book “Orbital Mechanics”, referring to a formulation due to Battin. x is determined by Solving a differential form of Kepler’s equation in universal variables

16
Analogy

17
Differential Kepler’s equation in universal variables x solves (universal variable differential Kepler equation Special functions needed:

18
Solving Kepler’s equation Iterative solutions until convergence Rapid convergence (Laguerre method is cubic) Only 7 or so iterations needed for double precision (though this could be tested more rigorously and I have not written my routines with necessarily good starting values).

19
Orbital elements a,e, I M,ω,Ω (associated angles) As we will see later on action variables related to the first three will be associated with action angles associated with the second 3. For the purely Keplerian system all orbital elements are constants of motion except M which increases with Problem: If M is an action angle, what is the associated momentum and Hamiltonian?

20
Keplerian Hamiltonian Problem: If M is an action angle, what is the associated action momentum and Hamiltonian? Assume that From Hamilton’s equations Energy

21
Keplerian Hamiltonian Solving for constants Unperturbed with only 1 central mass We have not done canonical transformations to do this so not obvious we will arrive exactly with these conjugate variables when we do so.

22
Hamiltonian formulation Poincare coordinates

23
Working in Heliocentric coordinates Consider a central stellar mass M *, a planet m p and a third low mass body. “Restricted 3 body problem” if all in the same plane We start in inertial frame (R *, R p, R) and then transform to heliocentric coordinates (r p, r) Replace accelerations in inertial frame with expressions involving acceleration of star. Then replace acceleration of star with this so we gain a term

24
Disturbing function New potential, known as a disturbing function – due to planet Gradient w.r.t to r not r p Direct term Indirect term -- because planet has perturbed position of Sun and we are not working an inertial frame but a heliocentric one— - Reduces 2:1 resonance strength. - Contributes to slow m=1 eccentric modes of self-gravitating disks Force from Sun

25
Direct and Indirect terms For a body exterior to a planet it is customary to write For a body interior to a planet: In both cases the direct term Convention ratio of semi-major axes

26
Lagrange’s Planetary equations One can use Hamilton’s equations to find the equations of motion If written in terms of orbital elements these are called Lagrange’s equations These are time derivatives of the orbital elements in terms of derivatives of the disturbing function To relate Hamilton’s equations to Lagrange’s equations you can use the Jacobian of derivatives of orbital elements in terms of Poincare coordinates

27
Lagrange’s equations where ε is mean longitude at t=0 or at epoch

28
Secular terms Expansion to second order in eccentricity Neglecting all terms that contain mean longitudes Should be equivalent to averaging over mean anomaly Indirect terms all involve a mean longitude so average to zero Laplace coefficients which are a function of α I have dropped terms with inclination here – there are similar ones with inclination Similar term for other body

29
Evolution in e Lagrange’s equations (ignoring inclination) Convenient to make a variable change Writing out the derivatives

30
Equations of motion For two bodies With solutions depending on eigenvectors e s,e f and eigenvalues g s,g f of matrix A (s,f: slow and fast) – Slow: both components of eigenvector with same sign, – Fast: components of eigenvector have opposite sign

31
Solutions One eigenvector eses eses efef Both eigenvectors

32
Both objects e f,1 e f,2 e s,1 e s,2 Anti aligned, fast, Δ ϖ =π Aligned and slow, Δ ϖ =0 apsidal alignment How can angular momentum be conserved with this?

33
Predicting evolution from orbital elements Unknowns – magnitudes of the 2 eigenvectors – 2 phases From current orbital elements

34
Animation of the eccentricity evolution of HD (Created by: Zsolt Sandor & Peter Klagyivik, Eötvös Lorand University)

35
Both together in a differential coordinate system radius = e 1 e 2 Slow only Apsidal aligned, non circulating, can have one object with nearly zero eccentricity. “Libration” Circulating fast only Note orbits on this plot should not be ellipses

36
Examples of near separatrix motion For exatrasolar planets LibrationCirculation In both cases one planet drops to near zero eccentricity e e ΔϖΔϖ ΔϖΔϖ Time one planet different lines consistent with data

37
From Barnes and Greenberg 08 ΔϖΔϖ e

38
Simple Hamiltonian systems Terminology Harmonic oscillator Pendulum Stable fixed point Libration Oscillation p Separatrix p q I

39
Multiple planet systems RV systems No obvious correlation mass ordering vs semi-major axis Mostly 2 planets but some with 3, 5 Eccentric orbits, but lower eccentricity than single planet systems Rasio, Ford, Barnes, Greenberg, Juric have argued that planet scattering explains orbital configurations Subsequent evolution of inner most object by tidal forces Many systems near instability line Lower eccentricity for multiple planet systems Lower mass systems have lower eccentricities

40
Mass and Eccentricity distribution of multiple planet systems High eccentricity planets tend to reside in single planetary systems

41
Hamiltonian view massless object near a single planet Fixed point at Aligned with planet Eccentricity does not depend on planet mass but does on planet eccentricity Poincaré momentum μ = m p /M * -

42
Expand around fixed point First transfer to canonical coordinates using h,k Then transfer to coordinate system with a shift h’=h-h f, k’=k-k f Harmonic motion about fixed point: that’s the free eccentricity motion

43
Free and Forced eccentricity Massless body in proximity to a planet e forced e free Force eccentricity depends on planet’s eccentricity and distance to planet but not on planet’s mass. Mass of planet does affect precession rate. Free eccentricity size can be chosen.

44
Secular problem with free and forced eccentricities

45
Pericenter Glow Mark Wyatt, developed for HR4796A system, later also applied to Fomalhaut system

46
Multiple Planet system Hamiltonian view Single interaction term involving two planets All semi-major axes and eccentricities are converted to mometa Three low order secular terms, involving Γ 1,Γ 2,(Γ 1 Γ 2 ) 1/2 Hamilton’s equation give evolution consistent with two eigenvectors previously found.

47
Epicyclic approximation These cancel to be consistent with a circular orbit

48
Epicyclic frequency to higher order in epicyclic amplitude (Contopoulos)

49
More generally on epicyclic motion Low epicyclic amplitude expansion For a good high epicyclic amplitude approximation see a nice paper by Walter Dehnen using a second order expansion but of the Hamiltonian times a carefully chosen radial function As long as there are no commensurabilities between radial oscillation periods and orbital period this expansion can be carried out

50
Low eccentricity Expansions Functions of radius and angle can be written in terms of the Eccentric anomaly is an odd function Bessel function of the first kind This can be shown by integrating and using Kepler’s equation (see page 38 M+D)

51
Low eccentricity expansions continued found by integrating Fourier coefficients by parts and using integral forms for the Bessel function

52
Continued using Kepler’s equation now can expand cos functions

53
Expansion of the Disturbing function in plane if writing the dot product in terms of orbital angles ψ angle between defined here

54
Angular factors When inclination is not zero we define Ψ is small if inclinations are small and can be expanded in powers of the sin of the inclinations

55
Expansion of the disturbing function -Continued Expand the disturbing function as a series of times inclinations, angular factors and some radii Use low eccentricity and inclination expansions for these factors Expand powers of Δ 0 in terms of powers of ρ 0 assuming that these are satisfied at low eccentricity

56
Laplace coefficients This is a Fourier expansion These are called Laplace coefficients, closely related to elliptic functions Can be evaluated by series expansion in α or in 1-α They diverge as α 1 separating the radial information from the angle information

57
Expansion of Disturbing function Disturbing function is written in terms of an expansion of derivatives of Laplace coefficients and cosines of arguments

58
First term! Useful relations can be found by manipulating the integral definition of the Laplace coefficients, e.g. for j=0

59
Second term j=1, j=-1

60
Simplification Using relations between coefficients derived by Brouwer & Clemens As we used in our discussion of secular perturbations Using them we find that secular low order secular terms are

61
More generally Expanding the disturbing function in terms of Poincare coordinates D’Alembert rules – flipping signs of all angles preserves series so only cosines needed – rotating coordinate system preserves series

62
Expansion of the Disturbing function In Summary Expansion of the disturbing function assuming low eccentricities, low inclinations Radial factors written in terms of Laplace coefficients and their derivatives Each argument and order of e,i gives a function Both direct and indirect terms can be expanded Expansion functions listed in appendix by M+D

63
Reading: Murray and Dermott Chap 2 Murray and Dermott Chap 6,7 Prussing and Conway Chap 2 on universal variables Wright et al. 2008, “Ten New and Updated Multi-planet Systems, and a Survey of Exoplanetary Systems” astroph-arXiv: v2 Malhotra, R. 2002, ApJ, 575, L33, A Dynamical Mechanism for Establishing Apsidal Resonance Barnes and Greenberg, “Extrasolar Planet Interactions”, astro-ph/

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google