Download presentation

Presentation is loading. Please wait.

Published byJerome Logan Modified over 3 years ago

2
4.6 Related Rates

15
What you’ll learn about Related Rate Equations Solution Strategy Simulating Related Motion Essential Questions How do we solve related rate problems by calculus?

16
Quick Review

17
Quick Review Solutions

18
What you’ll learn about Related Rate Equations Solution Strategy Simulating Related Motion Essential Questions How do we solve related rate problems by calculus?

19
Strategy for Solving Related Rate Problems 1.Understand the Problem In particular, identify the variable whose rate of change you seek and the variable (or variables) whose rate of change you know. 2.Develop a Mathematical Model of the Problem Draw pictures (many of theses problems involve geometric figures) and label the parts that are important to the problem. Be sure to distinguish constant quantities from variables that change over time. Only constant quantities can be assigned numerical values at the start. 3.Write an Equation relating the variable whose rate of change you seek with the variable(s) whose rate of change you know. The formula is often geometric, but it could come from a scientific application. 4.Differentiate both sides of the equation implicitly with respect to time Be sure to follow all the differentiation rules. The chain rule will be especially critical, as you will be differentiating with respect to the parameter t.

20
Strategy for Solving Related Rate Problems 5.Substitute values for any quantities that depend on time. Notice that it is only safe to do this after the differentiation step. Substituting too soon “freezes the picture” and makes changeable variables behave like constants, with zero derivatives. 6.Interpret the Solution Translate your mathematical result into the problem setting (with appropriate units) and decide whether the result makes sense.

21
Example A Highway Chase 1. Let x = distance of the speeding car from the intersection. Let y = distance of the police car from the intersection. Let z = distance between the two cars.

22
Example A Highway Chase 1. The car speed is 105 mph.

23
Example Conical Tank 2.Water runs into a conical tank at a rate of 9 ft 3 /min. The tank stands point down and has a height of 10 ft and a base radius 5 ft. How fast is the water level rising when the water is 6 ft deep? 10 5 h r Let r = radius of amount of water at any given time. Let h = height of amount of water at any given time. Let V = volume of water at any given time.

24
Pg. 251, 4.6 #1-15

Similar presentations

OK

Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.

Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on exponents and powers for class 8 Working of flat panel display ppt on tv Ppt on revolution of the earth and seasons worksheet Ppt on icici prudential life insurance Ppt on social networking dangers Ppt on office management system Ppt on world war ii Ppt on school management system software Ppt on home security system using gsm Store window display ppt online