Download presentation

Presentation is loading. Please wait.

Published byNancy Curtis Modified about 1 year ago

1
Electrical Transport BW, Chs 4 & 8; YC, Ch 5; S, Chs 4 & 5 What was Lord Kelvin’s name?

2
Electrical Transport BW, Chs 4 & 8; YC, Ch 5; S, Chs 4 & 5 What was Lord Kelvin’s name? “Lord Kelvin” was his title, NOT his name!!!

3
Electrical Transport ≡ The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized area. Among possible topics: 1. Current (drift & diffusion) 2. Conductivity 3. Mobility 4. Hall Effect 5. Thermal Conductivity 6. Saturated Drift Velocity 7. Derivation of “Ohm’s Law” 8. Flux equation 9. Einstein relation 10. Total current density 11. Carrier recombination 12. Carrier diffusion 13. Band diagrams in an electric field

4
Bound Electrons & Holes: Electrons which are immobile or trapped at defect or impurity sites. Or deep in the Valence Bands. “Free” Electrons: In the conduction bands “Free” Holes: In the valence bands “Free” charge carriers: Free electrons or holes. Note: It is shown in many Solid State Physics texts that: –Only free charge carriers contribute to the current! –Bound charge carriers do NOT contribute to the current! –As discussed earlier, only charge carriers within k B T of the Fermi energy E F contribute to the current. Definitions & Terminology

5
NOTE! The energy levels within ~ 2k B T of E F (in the “tail”, where it differs from a step function) are the ONLY ones which enter conduction (transport) processes! Within that tail, instead of a Fermi-Dirac Distribution, the distribution function is: f(ε) ≈ exp[-(E - E F )/k B T] (A Maxwell-Boltzmann distribution) The Fermi-Dirac Distribution

6
Only charge carriers within 2 k B T of E F contribute to the current: Because of this, as briefly discussed last time, the Fermi-Dirac distribution can be replaced by the Maxwell-Boltzmann distribution to describe the charge carriers at equilibrium. BUT, note that, in transport phenomena, they are NOT at equilibrium! The electron transport problem isn’t as simple as it looks! –Because they are not at equilibrium, to be rigorous, for a correct theory, we need to find the non-equilibrium charge carrier distribution function to be able to calculate observable properties. –In general, this is difficult. Rigorously, this must be approached by using the classical (or the quantum mechanical generalization of) Boltzmann Transport Equation. We will only briefly discuss this, to get an overview.

7
This approach treats electronic motion in an electric field E using a Classical, Newton’s 2 nd Law method, but it modifies Newton’s 2 nd Law in 2 ways: 1. The electron mass m o is replaced by the effective mass m* (obtained from the Quantum Mechanical bandstructures). 2. An additional, (internal “frictional” or “scattering” or “collisional”) force is added, & characterized by a “scattering time” τ In this theory, all Quantum Effects are “buried” in m* & τ. Note that: –m* can, in principle, be obtained from the bandstructures. –τ can, in principle, be obtained from a combination of Quantum Mechanical & Statistical Mechanical calculations. –The scattering time, τ could be treated as an empirical parameter in this quasi-classical approach. A “Quasi-Classical” Treatment of Transport

8
Justification of this quasi-classical approach is found with a combination of: –The Boltzmann Transport Equation (in the relaxation time approximation). We’ll briefly discuss this. –Ehrenfest’s Theorem from Quantum Mechanics. This says that the Quantum Mechanical expectation values of observables obey their classical equations of motion! Our Text by BW Ch. 4, calculations are quasi-classical & use Newton’s 2 nd Law. Ch. 8, combines quasi-classical & Boltzmann Transport methods. The text by YC The calculations are quasi-classical & use Newton’s 2 nd Law. The text by S Most calculations use the Boltzmann transport approach.

9
Notation & Definitions (notation varies from text to text) v (or v d ) Drift Velocity This is the velocity of a charge carrier in an E field E External Electric Field J (or j) Current Density Recall from classical E&M that, for electrons alone (no holes): j = nev d (1) n = electron density A goal is to find the Quantum & Statistical Mechanics average of Eq. (1) under various conditions (E & B fields, etc.).

10
In this quasi-classical approach, the electronic bandstructures are almost always treated in the parabolic (spherical) band approximation. –This is not necessary, of course! So, for example, for an electron at the bottom of the conduction bands: E C (k) E C (0) + (ħ 2 k 2 )/(2m*) Similarly, for a hole at the top of the valence bands: E V (k) E V (0) - (ħ 2 k 2 )/(2m*)

11
Recall: NEWTON’S 2 nd Law In the quasi-classical approach, the left side contains 2 forces: F E = -eE = electric force due to the E field F S = frictional or scattering force due to electrons scattering with impurities & imperfections. Characterized by a scattering time τ.

12
Newton’s 2 nd Law An Electron in an External Electric Field Assume that the magnetic field B = 0. Later, B 0 The Quasi-classical Approximation –Let r = e - position & use ∑F = ma m*a = m*(d 2 r/dt 2 ) = - (m*/τ)(dr/dt) -eE or m*(d 2 r/dt 2 ) + (m*/τ)(dr/dt) = -eE Here, -(m*/τ)(dr/dt) = - (m*/τ)v = “frictional” or “scattering” force. Here, τ = Scattering Time. τ includes the effects of e - scattering from phonons, mpurities, other e -, etc. Usually treated as an empirical, phenomenological parameter –However, can τ be calculated from QM & Statistical Mechanics, as we will briefly discuss.

13
With this approach: The entire transport problem is classical! The scattering force: F s = - (m*/τ)(dr/dt) = - (m*v)/τ –Note that F s decreases (gets more negative) as v increases. The electrical force: F e = qE –Note that F e causes v to increase. Newton’s 2 nd Law: ∑F = ma m*(d 2 r/dt 2 ) = m*(dv/dt) = F s – F e Define the “Steady State” condition, when a = dv/dt = 0 At steady state, Newton’s 2 nd Law becomes F s = F e (1) At steady state, v v d (the drift velocity) Almost always, we’ll talk about Steady State Transport (1) qE = (m*v d )/τ

14
So, at steady state, qE = (m*v d )/τ or v d = (qEτ)/m* (1) Using the definition of the mobility μ: v d μE (2) (1) & (2) The mobility is: μ (qτ) (3) Using the definition of current density J, along with (2): J nqv d = nqμE (4) Using the definition of the conductivity σ gives: J σE (This is Ohm’s “Law” ) (5) (4) & (5) σ = nqμ (6) (3) & (6) The conductivity in terms of τ & m* σ = (nq 2 τ)/m* (7)

15
Page 15 MacroscopicMicroscopic Summary of “Quasi-Classical” Theory of Transport The Drift velocity v d is the net electron velocity (0.1 to m/s). The Scattering time τ is the time between electron-lattice collisions. Charge Ohm’s Law Resistance Current

16
Page 16 Electronic Motion The charge carriers travel at (relatively) high velocities for a time t & then “collide” with the crystal lattice. This results in a net motion opposite to the E field with drift velocity v d. The scattering time t decreases with increasing temperature T, i.e. more scattering at higher temperatures. This leads to higher resistivity.

17
Page 17 Resistivity vs Temperature The resistivity is temperature dependent mostly because of the temperature dependence of the scattering time τ. In Metals, the resistivity increases with increasing temperature. Why? Because the scattering time τ decreases with increasing temperature T, so as the temperature increases ρ increases (for the same number of conduction electrons n) In Semiconductors, the resistivity decreases with increasing temperature. Why? The scattering time τ also decreases with increasing temperature T. But, as the temperature increases, the number of conduction electrons also increases. That is, more carriers are able to conduct at higher temperatures.

18
“Quasi-Classical” Steady State Transport Summary (Ohm’s “Law”) Current density: J σE (Ohm’s “Law”) Conductivity: σ = (nq 2 τ)/m* Mobility: μ = (qτ)/m* σ = nqμ As we’ve seen, the electron concentration n is strongly temperature dependent! n = n(T) We’ve said that τ is also strongly temperature dependent! τ = τ(T). So, the conductivity σ is strongly temperature dependent! σ = σ(T)

19
We’ll soon see that, if a magnetic field B is present also, σ is a tensor: J i = ∑ j σ ij E j σ, σ ij = σ ij (B) (i,j = x,y,z) NOTE: This means that J is not necessarily parallel to E! In the simplest case, σ is a scalar: J = σE, σ = (nq 2 τ)/m* J = nqv d, v d = μE μ = (qτ)/m*, σ = nqμ If there are both electrons & holes, the 2 contributions are simply added (q e = -e, q h = +e): σ = e(nμ e + pμ h ), μ e = -(eτ e )/m e, μ h = +(eτ h )/m h Note that the resistivity is simply the inverse of the conductivity: ρ (1/σ)

20
More Details The scattering time τ the average time a charged particle spends between scatterings from impurities, phonons, etc. Detailed Quantum Mechanical scattering theory (we’ll briefly describe) shows that τ is not a constant, but depends on the particle velocity v: τ = τ(v). If we use the classical free particle energy ε = (½)m*v 2, then τ = τ(ε). Seeger (Ch. 6) shows that τ has the approximate form: τ(ε) τ o [ε/(k B T)] r where τ o = classical mean time between collisions & the exponent r depends on the scattering mechanism: Ionized Impurity Scattering: r = (3/2) Acoustic Phonon Scattering: r = - (½)

21
Numerical Calculation of Typical Parameters Calculate the mean scattering time τ & the mean free path for scattering ℓ = v th τ for electrons in n-type silicon & for holes in p-type silicon. v d = μE, J = σE, μ = (qτ)/m* σ = nqμ, (½)(m*)(v th ) 2 = ( 3 / 2 ) k B T

22
Page 22 Phys Baski Solid-State Physics Carrier Scattering in Semiconductors

23
Page 23 Some Carrier Scattering Mechanisms Defect Scattering Phonon Scattering Boundary Scattering (From film surfaces, grain boundaries,...)

24
Page 24 Some Possible Results of Carrier Scattering 1.Intra-valley 2.Inter-valley 3.Inter-band

25
Page 25 Defect Scattering (Neutral Defects Ionized Defects Perturbation Potential Charged Defect

26
Page 26 Scattering from Ionized Defects (“Rutherford Scattering”) The thermal average Carrier Velocity in the absence of an external E field depends on temperature as: as The Mean Free Scattering Rate depends on the temperature as: So, (1/ ) -3 T -3/2 This gives the temperature dependence of the Mobility as:

27
Page 27 Lattice vibrations (phonons) modulate the periodic potential, so carriers are scattered by this (slow) time dependent, periodic, potential. A scattering rate calculation gives: 1/ ph ~ T -3/2. So Carrier-Phonon Scattering

28
Page 28 Scattering from Ionized Defects & Lattice Vibrations Together 1/ ph ~ T -3/2

29
Page 29 Mobility Measurements in n-Type Ge

30
Page 30 Electrical Conductivity Measurements in n-Type Ge

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google