Presentation is loading. Please wait.

Presentation is loading. Please wait.

Brain-Based Learning Is the Foundation of Integrated Curricula C. Murray Ardies.

Similar presentations

Presentation on theme: "Brain-Based Learning Is the Foundation of Integrated Curricula C. Murray Ardies."— Presentation transcript:

1 Brain-Based Learning Is the Foundation of Integrated Curricula C. Murray Ardies

2 The purpose of this presentation is to illustrate some of the basic concepts of brain-based learning and how they can be incorporated into an integrated curriculum. Brain-based learning is the process used to accomplish the educational objectives of the curriculum: An example curriculum for Health Science will be used to illustrate the concept.

3 Definitions Brain-Based Learning (BBL): - Instruction based on neurological processes that result in the formation of new memories. - BBL applies to in-class dynamics. Integrated Curriculum (IC, aka Interdisciplinary Curriculum or Synergistic Teaching…): - an approach to developing entire curricula - concepts that overlap multiple disciplines are examined for common concepts - factual & conceptual interrelationships are highlighted

4 Problem-Based Learning (PBL): student-initiated learning with guidance provided by an instructor/facilitator. - realistic problems are “posed” by the instructor - students figure them out with appropriate levels of guidance. - determine all factual & conceptual areas and their inter-relationships PBL is not the focus of this presentation, however... A PBL approach to designing lesson-plans, course materials, and curriculum development closely adheres to BBL model

5 Concept Map -illustrate relationships -problem solving -understanding new learning (in relation to what they already know) -organizing and evaluating curricula Some Concept Maps

6 Health Science Curriculum Design: - a PBL approach - what are all those things that affect our health? - how do they work? - demands EXPERTISE

7 Developing Expertise: Education Systems - provide structured learning opportunities - develop minimal functional expertise - deemed important by society - defined by Standards Illinois Learning Standards - science goal 12: “… provides fundamental concepts, principles, and interconnections of life, physical, and earth/space sciences” - science goal 13: “… know and comprehend the relationships between science, technology, and society…” Integrated Learning Concepts!

8 Experts are Learned People - meaningful patterns of information - content knowledge is organized - cannot be reduced to sets of isolated facts - knowledge is “conditionalized” on circumstances - retrieve knowledge with little effort organization, patterns, and conditionalized knowledge are integral to expertise, integrated learning and the neurological basis of learning

9 Experts are Important - developing & teaching integrated curricula - provide sufficient guidance for learning integrated concepts. Hard to Find - an expert in math is not necessarily expert in physics or chemistry or biology” - traditional education system not designed for integrated expertise. A Shameless Plug: Professional Development for Teachers

10 Neurological Basis of Developing Expertise - long-term (declarative) memories - easy to recall

11 Central Nervous System - brain and spinal cord Peripheral Nervous System - sensory and motor nerves

12 Selects appropriate internal responses Coordinates appropriate behavioral responses develops memories and maintains consciousness CNS coordinates and integrates information from the internal and external environment …

13 Based on all the external information received, and influenced by those stimuli that we are most attentive to, the brain selects and coordinates the appropriate (or inappropriate?) responses … We pay attention to those environmental stimuli that are the strongest… …and react accordingly for “survival” We also pay attention to those stimuli that are most important to us… …and react because we choose to

14 Some Important Parts of the Brain That Relate to Learning

15 Limbic (another very important) System of the Brain The limbic system is responsible for generating our emotional feelings (pleasure, frustration, anger) based on our cognitive interpretation of our environment

16 Substantia nigra Caudate Putamem Globus Pallidus Basal Ganglia – (Involved in Regulation of Movement) is part of the limbic system Ventral tegmental area Locus coeruleus

17 Memory, Learning, & Behavior we desire to perform behaviors which produce responses that we want - learn remember repeat unpleasant experience - learn remember avoid not particularly pleasant but highly desirable outcome - learn expect repeat remember repeat

18 Memory pattern of nerve-cell activity - interconnected nerve cells - interconnected to all other brain cells.

19 Memories We do not remember facts as discrete pieces of independent information We have memories of facts only in association with other memories We develop new memories only in association with existing memories

20 Memory/Learning coordinate existing pattern (or patterns) with new pattern (or patterns) of neural activity synthesis of new proteins in nerve cells - modify ability to be activated - create a new patterns of activation

21 Learning Parts of the brain that are important for learning.

22 Learning Hippocampus coordinates and integrates all incoming environmental stimuli with existing memories that correspond to the stimuli so we can identify (threats?) and act accordingly; activating ALL of them – we then pay attention to those that we recognize and are “important” to us

23 Learning New memory is constructed based on novel stimulus in comparison to existing memory. “Strength” of the memory is dependent on the frequency and strength of the neural activity.

24 Synaptic Remodeling new active synapses stimulate nerve-growth / maintain for many hours: synapsin I, synaptotagmin, syntaxin, integrins... activate signal transduction pathways Ca2+/calmodulin-dependent protein kinase II, CaM-KII; mitogen-activated/extracellular signal- regulated protein kinase, MAP-K/ERK I and II; protein kinase C, PKC-δ activate transcription regulators) cyclic AMP response element binding protein - CREB, Brain-derived neurotrophic factor - BDNF

25 Active Synapse Inactive Synapse Synaptic Remodeling Synapse

26 New Memory after sufficient amounts of new growth signals have been produced … & … they remain elevated long enough in the “stimulus-memory specific” activated nerve pathways … a new memory is formed

27 New Memory activated either through “new stimulus” or through the associated memory We remember facts as pieces of “information” in relation to other pieces of “information” which in turn are related to other …

28 Learning & Memory The greater the number of interconnected pathways that “intersect” the “new memory” – the easier it is to recall the “new memory”

29 Memory & Motor Skills patterns of neural activity in cerebellum developed in the same way as declarative memories.

30 Motor Skills & Memory Analyze and activate memories of possible motor responses to the current stimuli. Select and activate the pre-motor cortex Basal ganglia initiate & coordinate motor neurons. Sensory input is unconsciously compared to sensory memory - unconscious adjustments Sensory input compared to conscious memories - conscious adjustments Integration of conscious and subconscious adjustments results in actual performance

31 So… why is the skill stuff here? Skills such as running & cycling (and a whole lot more) are actually just programmed memories that are activated by a variety of stimuli; such as: got to catch the bus… starters pistol goes off at the beginning of a race… PE teacher tells you to run for a standardized test… and so on. Physical exercise is important for learning as illustrated in the following slides…

32 Exercise, Learning & Memory - Experiments: Rats on running wheels for 3, 7, & 28 days large “transient” increase in: synapsin I, synaptotagmin and syntaxin; Ca2+/calmodulin- dependent protein kinase II, CaM-KII; MAP-K/ERK I and II; PKC-δ; CREB moderate “transient-longer” increase in: BDNF moderate “transient” increase in: N-methyl-d-aspartate receptor, NMDAR-2A and NMDAR-2B and 1, EAAC1 moderate “transient” down regulation of: GABA receptor, glutamate decarboxylase GAD65 Exercise can enhance learning by “priming the pump” for new growth Exercise can enhance learning by “enhancing ABILITY to focus”

33 Exercise, Learning, & Memory - Experiments: Can activation alone produce brain changes without the subjects actually learning anything, just as activation of muscles by exercise can cause them to grow? Group 1 - traverse elevated obstacle course (very little total activity) Group 2 - ran 30 minutes, rested 10 minutes, then ran 30 minutes. Group 3 - had free access to an activity wheel Group 4 - “cage potato” Mandatory exercisers and the voluntary exercisers had higher densities of blood vessels than the cage potatoes or the “acrobats” The “acrobats” had the greatest number of synapses/cell Learning adds synapses... Exercise does not!

34 Exercise, Learning, & Memory - Experiments: Learning a maze (highly visual) structural changes in the visual area as expected one eye blocked: only brain regions connected to the open eye were altered add in complex motor skills: structural changes in motor region of the cerebral cortex and cerebellum Learning imposes new patterns of organization on the brain in ONLY those areas that are specifically activated during the new learning activity There is NO SUCH THING as “cross-learning” (a play on the cross-training concept)

35 One Last Experiment (human): List of words to memorize: sour candy-sugar-bitter-good-taste-tooth-nice-honey-soda-chocolate-heart-cake-tart-pie Later Tests: insisted that the word “sweet” was on the list. the “brain” creates categories for processing information Where There is No Order The Brain Imposes Order

36 What does this Mean For Education? Learning is an active process on the part of the student, not the teacher! Educators cannot teach! (we must create) Learning Environment

37 Brain-Based Education Memories are linked together in meaningful patterns If no pattern exists - one will be constructed: explain and illustrate exactly where the new learning fits - topic concept maps - course concept maps - curriculum concept maps

38 Brain-Based Education Memories are linked together in meaningful patterns that are specific to the actual “learning stimulus” Learning in one context will not automatically “cross-over” to another one …

39 memories: few connections memories: many connections

40 Repetition is key to forming new memories: Brain-Based Education Without constant review new connections will NOT be synthesized and the new learning cannot take place

41 Brain-Based Education “Strength” of the memory is dependent on the frequency and “strength” of the neural activity during learning. - arousal - focus - engagement - no distractions

42 It takes time to develop permanent memories Brain-Based Education You can’t just plow through the lesson plans, you must explain thoroughly the facts, relationships, and the integrated concepts … REPEATEDLY! Educators cannot expect students to remember what was said 10 minutes or even 3 minutes ago …

43 Think sports … how much effort and time does it really take to become minimally skilled? Brain-Based Education incorporate that time into class DEMAND sufficient homework to force the necessary practice… It takes time to develop permanent memories

44 Brain-Based Education It takes time to develop permanent memories Frequent Assessments using Written Explanations

45 Brain-Based Education We must re-think how our entire education system is organized … Traditional Model Integrated Model

46 PBL Curriculum Development: The purpose of the next set of slides is to illustrate how to approach the development of a curriculum in Health Science... (not actually describe all the details of the courses in one....)

47 PBL Curriculum Development... start with the problem: What Do You Have To Know and Understand to be an Expert in Health Science? What are all those things that affect our health?... What inside of us gets affected by all those things?... How does that change our health?... How does that change us? How do all those things work?... How do they affect each other?... How can we change those effects?... How can we make good things happen and bad things not happen?... As specific areas of content are identified and interrelationships understood... The concept for a curriculum model is developed and a curriculum starts to appear...

48 Known areas of study are simply placed adjacent to the appropriate concept areas and a developing concept of a Health Science curriculum starts to emerge... (while the relationships might be obvious... the details of interaction are not... and explaining those detailed interactions is what education is all about, eh?)

49 Those things that maintain or enhance cell function can be considered to be “healthy” Those things that compromise cell function can be considered to be “unhealthy” a convenient model for a general or introductory course in health at any academic level – (but just not quite right yet for a curriculum...) all things health relate to cell function of one sort or another...

50 Because what follows is a model for a university-level Health-Science curriculum... The individual course details quickly get very complex... With a focus on cell functions... an introductory-level course in biochemistry and cell biology is necessary as a starting point: (And yes... the next slide is meant to be ridiculously complex)

51 In order to easily understand current concepts in the biological basis of human function and health, a cellular approach is necessary; which means that the first course in a Health Science Curriculum will be an Introduction To Metabolic Biochemistry And Cell Biology Damage Cell Structures Functions Inflammation Structure Metabolism / Biochemistry Protein Synthesis Necrosis Cell Division

52 Once a general model of cellular function has been established (including concepts of normal function, dysfunction, and consequences of damage) other courses are then developed and added to the curriculum: Nutrients... Diet... Human Disease... Learning... Exercise... Sex... Drugs... With a focus on: Metabolic Biochemistry And Cell Biology And How Alterations in Cell Function Affect “Health” (almost there with an overall curriculum concept...)

53 ...concepts of damage and cellular dysfunction are discussed as nutritional deficiencies with clinical health consequences (ie. deficiency diseases)... Diet & Nutrition concepts are added & model of “normal” function becomes... Inflammation

54 The developing concept of Health is now seen as an interaction between factors that affect cell function(s) and the response to cellular dysfunction & damage and how that response is related to some forms of disease... Inflammation

55 With the addition of this concept: Health is considered to be the “end-result” of an interaction between factors that affect cell functions & the response to cellular dysfunction and damage & how that response affects cell functions, organ function and whole-body function... It is a simple matter to add in concepts of human disease to that model... every new course starts with a review of metabolic biochemistry and cell biology with an additional emphasis on those functions that are topical within the new course...

56 By incorporating various aspects of Human Disease into the cellular-function model it becomes evident that disease is a chemical or biochemical process that leads to cellular dysfunction and/or damage and the cellular / organ / systemic response to that damage is the manifestation (symptoms) of the disease

57 Human disease, therefore, is nothing more than cellular function gone “awry” and mechanisms of disease are really nothing more those specific processes that affect cellular function... Environmental Exposure: estrogenic pesticides increase risk for breast cancer? Heredity: inheriting BRCA1 & BRCA2 genes increases risk for breast cancer? Behaviors: lack of physical activity increases risk for breast cancer? Diet: Red dye #3 in foods alters cellular mechanisms that lead to increased risk for breast cancer? Normal Aging: normal cell division processes in ductal epithelial cells of the breast increases risk for breast cancer over time?

58 Therefore the Conceptual Model of Health becomes:

59 Courses with a strong behavioral component such as: Human Sexuality and Drug Use and Abuse start with the learning / behavioral concepts developed earlier in this presentation while nerve-cell functions and consequences of behaviors appropriate to the specific courses are incorporated as appropriate... Courses in Exercise Science also are important because of the almost universal effects of exercise on cellular metabolism and cell function (think prevention here...)

60 And the Conceptual Model for a Health Science Curriculum becomes: Each course starts with an overview of cell functions & disease mechanisms to re-orient everyone to the health model... Each course then emphasizes the new functions and functional relationships that are specific to the course area... and reviews relationships with relevant functions discussed in all previous courses within the curriculum

61 Adding another course into the curriculum becomes relatively easy... For example: The Biological Basis of Prevention Through Diet & Exercise...

62 Mechanisms of metabolism and regulation of protein synthesis from previous courses are reviewed and then expanded on with new details... Various dietary components and the different effects of exercise that alter Mechanisms Of Disease are emphasized... Resulting in a Detailed analysis of Prevention... and, obviously, (how) Enhancement of Health (works)

63 And the Conceptual Model for the expanded Health Science Curriculum becomes:

64 Developing an Integrated BBL Curriculum: 1. Comprehensive and detailed analysis of all areas (courses) of study... 2. Understanding of the details of inter-relationships among areas and variables within each area... 3. A Conceptual Framework for each course and for the entire curriculum (including appropriate order... ie. prerequisite courses prior to advanced courses)... 4. Embed review of prior concepts into each course to enhance learning and overall conceptual understanding... 5. Embed review of curriculum concepts into each course to enhance learning and overall conceptual understanding... 6. Embed assessments into each course that forces review of previously covered material in addition to covering new material... 7. Valuable approach for course / curriculum evaluation

65 Bibliography Benjamin, S. "An Ideascope for Education: What Futurists Recommend." Educational Leadership 47/1 (1989): 8-16. Bonds, C.; Cox, C., III; and Gantt-Bonds, L. "Curriculum Wholeness through Synergistic Teaching." The Clearing House 66/4 (1993): 252-254. How People Learn: Brain, Mind, Experience, and School: Expanded Edition (2000) commission on Behavioral and Social Sciences and Education. Center for Education (Division of Behavioral and Social Sciences and Education of the National Academies), National Academy Press Caine, G. and R. N. Caine, and S. Cromwell. Mind shifts: A Brain-Based Process for Restructuring Schools and Renewing Education. Tucson, AZ: Zephyr Press, 1994. Jensen, E. Teaching with the brain in mind. Alexandria, VA: Association for Supervision and Curriculum Development, 1998. Jensen, E. Brain-Based Learning: The New Paradigm of Teaching. Thousand Oaks, CA, Corwin Press (A Sage Company), 2008. Humphreys, A.; Post, T.; and Ellis, A. Interdisciplinary Methods: A Thematic Approach. Santa Monica, CA: Goodyear Publishing Company, 1981. Fogarty, R. The Mindful School: How to Integrate the Curricula. Palatine, IL: Skylight Publishing, Inc., 1991. Bonds, C.; Cox, C., III; and Gantt-Bonds, L. "Curriculum Wholeness through Synergistic Teaching." The Clearing House 66/4 (1993): 252-254. - (a truly excellent resource on IC) Friend, H. The Effect of Science and Mathematics Integration on Selected Seventh Grade Students: Attitudes Toward and Achievement in Science. New York: New York City Board of Education, 1984. Berlin, D., and White, A. "Report from the NSF/SSMA Wingspread Conference: A Network for Integrated Science and Mathematics Teaching and Learning." School Science and Mathematics 92/6 (1992): 340-343. Malecki, C. "Teaching Whole Science in a Departmentalized Elementary Setting." Childhood Education 66/4 (1990): 232-237. G Choon-Huat Koh, H Eng Khoo, M L Wong, and D Koh. The effects of problem-based learning during medical school on physician competency: a systematic review, CMAJ: 178 (1) 2008. Merrill, M.D. (2002). "A pebble-in-the-pond model for instructional design". Performance Improvement 41 (7): 39–44.

66 J D Martin,. Concept Mapping as an aid to lesson planning: A longitudinal study. Journal of Elementary Science Education, 6(2), 11-30., 1994. B S Allen, R P Hoffman, J Kompella, T G Sticht. Computer-based mapping for curriculum development. In: Proceedings of selected Research and Development Presentations Technology sponsored by the Research and Theory Division. New Orleans, LA, 1993. M A Dyrud. Mapping: A Collaborative Activity for fun or profit. The Bulletin of the Association for Business Communication, 57(2), 57-58., 1994. C D Ennis. Knowledge and beliefs underlying curricular expertise. Quest, 46, 164-175., 1994 Edmondson, K. M. (1995). Concept Mapping for the development of medical curricula. Journal of Research in Science Teaching, 32 (7), 777-793. Novak, J. D. (1998). Learning, creating, and using knowledge: Concept Maps as facilitative tools in schools and corporations. Mahweh, NJ: Lawrence Erlbaum Associates. How People Learn: Brain, Mind, Experience, and School: Expanded Edition. Commission on Behavioral and Social Sciences and Education. Center for Education (Division of Behavioral and Social Sciences and Education of the National Academies), National Academy Press, 2000. Raffaella Molteni, Zhe Ying, Fernando Gómez-Pinilla (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience 16 (6), 1107–1116.

Download ppt "Brain-Based Learning Is the Foundation of Integrated Curricula C. Murray Ardies."

Similar presentations

Ads by Google