Download presentation

Presentation is loading. Please wait.

Published byPhilip Hill Modified over 2 years ago

1
TWISTERTWISTER

2
TWISTERTWISTER Directions: 1)Each student picks a circle with a color (red, blue, green, yellow) from a bag. 2)The teacher spins the spinner (either on Smartboard or homemade) and a color is revealed. 3)The teacher reads the first word of that color (yellow 1). Each yellow student has two minutes to write a definition of that word. 4)The teacher collects the definitions and reads them aloud without saying the student’s name. 5)The rest of the class votes on the best definition. The students get a point for each vote they get. 6)The students with the most votes after all words have been read is the winner.

3
TWISTER 1 1 5 5 9 9 13 17 21 2 2 3 3 4 4 18 10 14 6 6 22 7 7 23 11 15 19 8 8 24 20 16 12 Choose a number.

4
TWISTER conclusion

5
Is the part of a conditional statement following the word then. back

6
TWISTER Paragraph proof

7
Paragraph proof Is a style of proof that presents the steps of the proof and their matching reasons as sentences in a paragraph back

8
TWISTER conjecture

9
Educated guess A statement you believe to be true based on inductive reasoning back

10
TWISTER inverse

11
Is the statement formed by negating the hypothesis and the conclusion back

12
TWISTER negation

13
The negation of a statement p is “not p”, written as ~p back

14
TWISTER Flowchart proof

15
Flowchart proof A second style of a proof which uses boxes and arrows to show structure back

16
TWISTER polygon

17
Polygon Is defined as a closed plane figure formed by three or more line segments back

18
TWISTER Conditional statement

19
Conditional statement Is a statement that can be written in the form of “if p, then q” back

20
TWISTER Inductive reasoning

21
Inductive reasoning Is the process of reasoning that a rule or statement is true because specific cases are true back

22
TWISTER contrapositive

23
Is the statement formed by both exchanging and negating the hypothesis and the conclusion back

24
TWISTER Truth value

25
A conditional statement has a truth value of either true (T) or false (F). False – when hypothesis is T and conclusion is F back

26
TWISTER polygon

27
Is defined as a closed plane figure formed by three or more line segments back

28
TWISTER Biconditional statement

29
Biconditional statement Is a statement that can be written in the form “p if and only if q” This means “if p, then q” and “if q, then p” back

30
TWISTER hypothesis

31
The part of a conditional statement following the word if. back

32
TWISTER quadrilateral

33
A four-sided polygon back

34
TWISTER converse

35
Is the statement formed by exchanging the hypothesis and the conclusion back

36
TWISTER Deductive reasoning

37
Deductive reasoning Is the process of using logic to draw conclusions from given facts, definitions, and properties. back

38
TWISTER hypothesis

39
The part of a conditional statement following the word if. back

40
TWISTER definition

41
Is a statement that describes a mathematical object and can be written as a true biconditional back

42
TWISTER proof

43
Is an argument that uses logic, definitions, properties, and previously proven statements to show that a conclusion is true. back

44
TWISTER triangle

45
Is defined as a three-sided polygon back

46
TWISTER counterexample

47
To show a conjecture is always true, you much prove it. To show a conjecture is false, you have to find only one example in which the conjecture is not true. back

48
TWISTER Two column proof

49
Two column proof In this proof you list the steps of the proof in the left column and matching reason for each step in the right. back

50
TWISTER conclusion

51
The part of a conditional statement following the word then back

52
TWISTER polygonBiconditional statement negation proof contrapositive conjecture Deductive reasoning counterexample conclusion definition Truth value hypothesis converse Inductive reasoning conclusion inverse polygon triangle hypothesis Paragraph proof Conditional statement Two Column proof quadrilateral Flowchart proof

Similar presentations

OK

Inductive Reasoning Notes 2.1 through 2.4. Definitions Conjecture – An unproven statement based on your observations EXAMPLE: The sum of 2 numbers is.

Inductive Reasoning Notes 2.1 through 2.4. Definitions Conjecture – An unproven statement based on your observations EXAMPLE: The sum of 2 numbers is.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on intelligent manufacturing manchester Ppt on solar power satellites sps Ppt on index numbers economics Ppt on south african culture and food Ppt on success and failure rates Ppt on l&t company Ppt on do's and don'ts of group discussion topics Ad mad show ppt on tv Ppt on 500 mw turbo generator design Ppt on biography of mahatma gandhi