Presentation is loading. Please wait.

Presentation is loading. Please wait.

MAC Research Highlight Y.C. Tseng. Outline: 3 Main Research Issues Analysis: – –G. Bianchi, “ Performance Analysis of the IEEE 802.11 Distributed Coordination.

Similar presentations


Presentation on theme: "MAC Research Highlight Y.C. Tseng. Outline: 3 Main Research Issues Analysis: – –G. Bianchi, “ Performance Analysis of the IEEE 802.11 Distributed Coordination."— Presentation transcript:

1 MAC Research Highlight Y.C. Tseng

2 Outline: 3 Main Research Issues Analysis: – –G. Bianchi, “ Performance Analysis of the IEEE 802.11 Distributed Coordination Function ”, IEEE J-SAC, 2000. – –K. Kanodia et al., “ Ordered Packet Scheduling in Wireless Ad Hoc Networks: Mechanisms and Performance Analysis ”, ACM MobileHoc 2002. Protocols: – –R. Garces and J. J. Garcia-Luna-Aceves, "Collision Avoidance and Resolution Multiple Access with Transmission Groups", INFOCOM 2007. – –B. P. Crow, J. G. Kim, & P. Sakai, "Investigation of the IEEE 802.11 Medium Access Control (MAC) Sublayer Functions", INFOCOM'97. – –R. O. Baldwin, N. Davis, and S. F. Midkiff, "A Real-time Medium Access Control Protocol for Ad Hoc Wireless Local Area Networks", ACM MC2R, Vol. 3, No. 2, 1999, pp. 20-27.

3 Handover latency reduction: – –H. Kim, S. Park, C. Park, J. Kim, and S. Ko, “ Selective Channel Scanning for Fast Handoff in Wireless LAN using Neighbor Graph ”, ITC-CSCC 2004, July 2004. – –S. Shin, A. S. Rawat, H. Schulzrinne, "Reducing MAC Layer HandoffLatency in IEEE 802.11 Wireless LANs", ACM MobiWac'04, Oct, 2004. – –C.C. Tseng, K.H. Chi, M.D. Hsieh, and H.H. Chang, “ Location-based fast handoff for 802.11 networks ”, IEEE Communications letters, vol. 9, issue 4, pp. 304- 306, April 2005.

4 Research Highlight: DCF Performance Analysis n Ref: G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function”, IEEE J-SAC, 2000. n Assuming saturation situation (stations always have packets to transmit), the work analyze the DCF performance. n state of a station: (s(t), b(t)) n s(t): backoff stage (0, 1, …, m) of the station uCW max = 2 m W min uLet W i = 2 i W. n b(t): backoff counter value n p: colliding probability (a constant)

5 State Transition Diagram of Backoff

6 Some Important Transitions start backoff failure, next stage failure, max stage backoff 1 step successful trans.

7 Research Highlight: Unfair Access n Ref: K. Kanodia et al., “Ordered Packet Scheduling in Wireless Ad Hoc Networks: Mechanisms and Performance Analysis”, ACM MobileHoc 2002. n As there are multiple wireless links coexisting, some unfairness problem may arise. n Scenario 1: Asymmetric Information uthroughputs ratio of A to B = 5% : 95% ureason: B knows more information than A does A B

8 n Scenario 2: Perceived Collision uthroughputs of A : B : C = 36% : 28% : 36% ureason: Due to spatial reuse, flow A and C can capture the channel simultaneously, thus causing flow B to reserve consecutive NAVs. n Proposed solution: “Distributed Wireless Ordering Protocol” uan ordered distributed packet scheduling for MAC ucan be based on any reference scheduler, such as FIFI, Virtual Clock, Earliest Deadline First. A B C

9 Research Highlight: Collision Avoidance and Resolution Multiple Access with Transmission Groups R. Garces and J. J. Garcia-Luna-Aceves INFOCOM’97

10 Abstract n a CARMA-NTG protocol for accessing wireless media uCARMA-NTG = Collision Avoidance and Resolution Multiple Access Protocol with Non-persisitent Trees and transmission Group uBased on transmission group uOnce obtaining the medium, a station will have its right to keep on sending. ubased on RTS/CTS messages

11 Concept of Cycles n Dynamically divide the channel into cycles of variable length. uEach cycle contains a contention period and a group- transmission period. uThe group-transmission period is a train of packets sent by users already in the group. n New users contend to join transmission group by contending during the contention period. A, B, CY, A, B, C X Y Z Z, Y, A, B, CX, Z, Y, A, B, C media : contention period : group trans. period

12 Each STA Needs to Keep Track of … n To send in the transmission period, each station must know the following environment parameters: uthe number of members in the transmission group uits position within the group uthe beginning of the each group-transmission period uthe successful RTS/CTS exchange of new users in the previous contention period

13 Group-Transmission Period n A station transmits once the previous station’s packet is received. uThe spacing is twice the propagation delay. n If this is not heard during this period, uassume that the previous station fails uits membership is removed from the group uthe failed station has to contend to join the group later. ABCACAC B contend later B’s transmission exceeds propagation delay

14 Contention Period n Contending based on RTS/CTS exchange. n The contention period terminates once the first station successfully join the group. n Each station runs the NTG scheme (non-persistent tree and transmission group) n Each station keeps the following variables: ua unique ID uLowID and HiID: to denote the current contention window in the current contention period åcontention window: the allowable ID’s that can contend åan ID not within this range can not contend ua stack: the future potential contention windows

15 NTG Scheme n Initially, LowID=1 and HiID=(max. ID in the system) n On RTS conflict, all stations divide (LowID, HiID) into u(LowID, (LowID+HiID)/2) u((LowID+HiID)/2 + 1, HiID) // i.e., binary split n PUSH the first part into STACK n Contend if its ID is within the latter part. n If no RTS is heard after channel delay, POP the stack and repeat recursively. n ONLY stations in the RTS state can persist in trying. unew stations: backoff and wait until the next period ualready-in-group stations: not until they leave the group

16 Contention Example n A system with 4 stations: n00, n01, n10, n11. n n00 and n01 are contending. n11 idle n10 idle n01 RTS n00 RTS (00, 11) before 1st collision (10, 11) after 1st collision allowed interval (00, 01) after idle (00, 01) after 2nd collision (01, 01) (00, 00) after n01 success (00, 11) n01 RTS n00 RTS n01 RTS packets (a) (b) (c) (d)

17 Short Summary n propose the concept of group transmission uOnly one RTS/CTS exchange is used for transmitting a train of packets ubetter fairness than IEEE 802.11 n NTG (non-persistent tree group) keeps the contention cost low. n Performance: uon high load, similar to TDMA uon low load, better than TDMA by getting rid of empty slots

18 Research Highlight: Polling Issue in IEEE 802.11 “ Investigation of the IEEE 802.11 Medium Access Control (MAC) Sublayer Functions ”, B. P. Crow, J. G. Kim, & P. Sakai, INFOCOM ’ 97.

19 Problem Statement In the PCF function of IEEE 802.11, it is NOT specified how to poll STAs. Problem: how to do voice communication using PCF?  Assuming that all voice packets have the same priority. Voice stream characteristic:  ON-and-OFF process  ON = talking;  OFF = listening talksilent low probability

20 A “Round Robin” Approach AP keeps track of the list of STAs to be polled.  When CFP begins, the AP polls the STAs sequentially.  If the AP has an MPDU to send, the poll and MPDU are combined in one frame to be sent.  O/w, a sole CF-Poll is sent.  When CFP ends, the AP keeps track of the location where the polling stops.  Then resume at the same place in the next CFP.

21 (cont.) Within a CFP_Repetition_Interval, if an STA sends no payload in k polls, the STA is dropped from the polling list.  k is an tunable parameter In the next CFP, the STA will be added back to the list again. Basic Idea: to avoid useless polling.

22 Simulation results:  Smaller k gives better data throughput (Fig. 14).  k = 1~5 does not affect the voice delay (Fig. 15).

23 Short Summary An interesting polling mechanism based on specific applications. Future directions: how to support other types of media.

24 Main Idea: “ send your next backoff value ” ACM Mobile Computing and Communication Review, 1999, Vol. 3, No. 2, pp. 20-27. A Real-Time Medium Access Control Protocol for Ad Hoc Wireless Local Area Networks

25 Review of IEEE 802.11 The CW (contention window) is initially CWmin, and is doubled after each failure, until CWmax is reached.  BV (backoff value) randomly in [0..CW-1].  The BV is decreased after each idle slot.

26 Drawback of IEEE 802.11 Can not meet the requirements of real- time communication.  When a packet has missed its deadline, the packet will still be buffered and sent.  Thus, this causes more contention, collisions,...  more packets may miss their deadlines. There are 4 rules (next few pages).

27 Rule 1: Enhanced Collision Avoidance Announcing the next BV:  When a packet is transmitted, the next BV to be used is placed in a field of the packet.  Stations who hear this packet will avoid selecting this BV as their next backoff timer.  BV is a random number in [0..CW-1].

28 Details:  Prior to transmitting a packet, a station will select its next BV from the range of [0..CW-1], excluding those BV ’ s already chosen by other stations.  A station will indicate in its data packet the next BV value to be used.  A station should keep a table of BV values used by other stations.  After an idle slot, a station should decrease its own BV, as well as others ’ BVs in its table.

29 Example:  A: 3  1  8  B: 1  6 ...  C: 5  2 (collides with B ’ s, changed to 3) B(6)A(1)A(8)C(3)B(...)C(...) 0 1 2 3 4 5 6 7 …

30 Rule 2: Transmission Control A station must send when its BV value has expired. If the packet experiences transmission failure, it will be reexamined to see if its deadline has been missed.  Note: another backoff still has to be taken.

31 Rule 3: Contention Window Size CW is set to 8N, where N is the estimated number of “ real-time ” stations.  N: can be estimated by counting the number of unique addresses for a period of time.  [alternative] N: a function of current channel load.  “ 8 ” is chosen by instinct. Note: CW is thus not doubled after a transmission failure  (compared the original IEEE 802.11 of doubling each time).

32 Rule 4: Collision of BV  Due to mobility, transmission error, and collisions, a station may receive a packet indicating a BV equal to its own BV.  The station must select another BV value; otherwise, collision will occur.  To avoid the station being unduly penalized, the new BV should be selected from [0..CBV-1].  CBV = its current BV.  I.e., the station is given higher priority.  If all values in [0..CBV-1] are chosen, then we double it (i.e., [0..2*CBV-1]).

33 Collision Ratio RT-MAC is quite stable in collision prob. with respect to the number of stations.

34 Short Summary A new RT-MAC protocol.  broadcasting the next BV value  BV depends on the current number of stations Results:  The network behavior is quite stable in terms of mean delay, missed deadline ratio, and collision ratio.  The mean delay is quite independent of the number of stations.

35 Research Highlights How to reduce handover time?

36 How to reduce handover time? n Channel scanning in 802.11 is very time-consuming if all channels need to be scanned. uIf scanning one channel takes 30 ms, the toally 300-400 ms is needed.

37 Research Highlight: Fast Channel Scanning by Neighbor Graph n Ref: H. Kim, S. Park, C. Park, J. Kim, and S. Ko, “Selective Channel Scanning for Fast Handoff in Wireless LAN using Neighbor Graph”, ITC-CSCC 2004, July 2004. n Method: uA concept called neighbor graph (NG) is proposed. From the NG provided by an external server, a MH only needs to scan the channels that are used by its current AP’s neighbors. About 10 ms are needed to scan a specific neighbor.

38 Research Highlight: Fast Channel Scanning by Caching n Ref: S. Shin, A. S. Rawat, H. Schulzrinne, "Reducing MAC Layer HandoffLatency in IEEE 802.11 Wireless LANs", ACM MobiWac'04, Oct, 2004. n Method: uMH maintains a cache which contains a list of APs adjacent to its current AP. uThe cached data was established from its previous scanning. åOnly the two APs with the best RSSI were cached. uDuring handoff, the cached APs are searched first. If this fails, scanning is still inevitable.

39 Research Highlight: Fast Channel Scanning by Location Information n Ref: C.C. Tseng, K.H. Chi, M.D. Hsieh, and H.H. Chang, “Location-based fast handoff for 802.11 networks”, IEEE Communications letters, vol. 9, issue 4, pp. 304- 306, April 2005. n Method: uMH can predict its movement path and select the potential AP. uA location server is needed to provide information of APs. uSo a MH can re-associate with its new AP directly without going through the probe procedure. uHowever, this scheme relies on a precise localization method.

40 Other Readings Medium Access Control Medium Access Control –R. Garces and J.J. Garcia-Luna-Aceves, “ Floor Acquisition Multiple Access with Collision Resolution, ” Proc. ACM/IEEE MobiCom 96, Rye, New York, November 11-12, 1996. –Z. Tang and J.J. Garcia-Luna-Aceves, “ Hop-Reservation Multiple Access (HRMA) for Ad-Hoc Networks, ” Proc. IEEE INFOCOM '99, New York, New York, March 21--25, 1999. –V. Bharghavan, A. Demers, S. Shenker and Lixia Zhang, “ MACAW: A Media Access Protocol for Wireless LAN's, ” Proceedings of SIGCOMM 94, pp.212-225. –P. Karn, “ MACA - A New Channel Access Method for Packet Radio, ” ARRL/CRRL Amateur Radio 9th Computer Networking Conference, April 1990, pp.134-140. –Romit Roy Choudhury, Xue Yang, Ram Ramanathan, and Nitin Vaidya, “ Using Directional Antennas for Medium Access Control in Ad Hoc Networks, ” ACM International Conference on Mobile Computing and Networking (MobiCom), September 2002.


Download ppt "MAC Research Highlight Y.C. Tseng. Outline: 3 Main Research Issues Analysis: – –G. Bianchi, “ Performance Analysis of the IEEE 802.11 Distributed Coordination."

Similar presentations


Ads by Google