Download presentation

Presentation is loading. Please wait.

Published byPhyllis Patterson Modified over 3 years ago

1
VAR Models Yankun Wang, Cornell University, Oct 2009

2
What is VAR? A var (p) model is: with and Originally proposed by Sims (1980) Efficient way of summarizing information contained in the data Useful for forecasting Conduct economically interesting analysis under meaningful identification restrictions

3
Outline: Reduced form VAR Wold Theorem Specification Estimation Presentation of Results Structural VAR Identification Potential extension to “Evaluation of Currency Regimes: the Unique Role of Sudden Stops”by Assaf Razin and Yona Rubinstein

4
The Wold Theorem Wold Theorem: Every stationary process can be written as the sum of two components: a deterministic part and an MA(∞) part. As a result: Every stationary process can be written as a VAR process of infinite order. Potential Problem: In reality, we can only deal with finite order.

5
Specification What is the appropriate lag length in the VAR? Three criterions: i. Akaike information criterion (AIC) ii. Schwarz criterion (SIC) iii. Hannan-Quinn criterion (HQC) ( all functions of m, T, and variance-covariance matrix) In practice: Fix an upper bound of lag length q (12), choose the q which minimizes one of the information criterion AIC is inconsistent For T>20, SIC and HQC will always choose smaller models than AIC

6
Estimation Multivariate GLS estimates are the same as equation by equation OLS estimates. For unrestricted VAR models: ML estimates and equation by equation OLS estimates coincide. When a VAR is estimated under some restrictions, ML estimates are different from OLS estimates; ML estimates are consistent and efficient if the restrictions are true.

7
Presentation of Results It is rare to report estimated VAR coefficients. Instead: Impulse responses Forecast error variance decomposition: assess the relative contribution of different shocks to fluctuations in varables Historical Decomposition: given the path of one specific shock, how will the variables evolve?

8
Structural VARs Suppose we have estimated the following reduced form VAR: with. ! : u is just reduced form residuals, no economic meaning. Solution: Assume, where is the vector of fundamental shocks, then naturally: Lack m(m-1)/2 restrictions to exactly identify D.

9
Short-Run Timing Restrictions Example: Suppose m=3: output, inflation and interest rate: Criticism: hard to justify from theoretical foundations In practice: try to switch the ordering the variables

10
Long-run Impact Restrictions Classical example: Blanchard and Quah ( 1989) Suppose two variable system: output growth and unemployment Total long run impact matrix: Assume: accumulated long-run effect of demand shocks on is zero,

11
Sign Restrictions Restricting the sign (and/or shape) of structural responses. Faust (1998), Canova and De Nicolo (2002) and Uhlig(2005) Informally used in research ( e.g. monetary shocks must generate a liquidity effect): this approach makes it explicit More justifiable by theoretical model: DSGEs seldom deliver all zero restrictions, but lots of sign restrictions usable

12
Example: Uhlig (2005) Contractionary Policy: Responses of prices and nonborrowed reserves are not positive and those of the federal funds rate are not negative

13
Razin and Rubinstein: Output Growth Rate Prob of Sudden Stop/Currency Crisis Flexible Exchange Rate Regime Capital Account Liberalization - - - + +

14
Could we extend this framework to a dynamic analysis? What are the variables to include? [growth rate of output; change/level of exchange rate regime; change/level of capital account liberalization; probability of crisis] What are the shocks we want to identify? One choice: shocks interpreted according to variables

15
How to Identify the Structural Shocks? Shock run restriction? Long run restriction? Sign restriction? Available convention: Exchange rate shock from flexible to peg should increase crisis probability; Capital Account Liberalization shock from less to more free capital flow should increase crisis probability What are their effects on output?

Similar presentations

OK

Welcome to Econ 420 Applied Regression Analysis Study Guide Week Four Ending Wednesday, September 19 (Assignment 4 which is included in this study guide.

Welcome to Econ 420 Applied Regression Analysis Study Guide Week Four Ending Wednesday, September 19 (Assignment 4 which is included in this study guide.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Download ppt on railway reservation system Ppt on different types of food in india Ppt on video teleconferencing jobs Ppt on digital multimedia broadcasting Ppt on standing order act registration Ppt on ready mix concrete plant Ppt on media research tools Ppt on cse related topics of psychology Ppt on complex numbers and quadratic equations for class 11 Working of raster scan display ppt online