Download presentation

Presentation is loading. Please wait.

Published byVincent Marsh Modified about 1 year ago

1
Using Clicker Items to i.Deepen Understanding of Measurement Concepts ii.Foster Desirable Habits of Mind

2
Logging In Procedure 1. Turn-on your clicker 2. Wait until it says “Enter Student ID” (Enter your 5-digit ID) 3. The screen should display “ANS”

3
Suppose p kilometers is equal to q feet, where p and q are positive numbers. Which statement is correct? a. p > q b. p < q c. p = q d.None of the above Item 1

4
Suppose p kilometers is equal to q feet, where p and q are positive numbers. Which statement is correct? a. p > q b. p < q c. p = q d.None of the above Revote 1

5
Suppose p kilometers is equal to q feet, where p and q are positive numbers. Which statement is correct? a. p > q b. p < q c. p = q d.None of the above Fact:1 km 0.62 mile; 1 mile = 5280 feet HoM:Explore and generalize a pattern pq Procedure:1 km 0.62 x 5280 feet = feet

6
Concept:Conservation (recognizing smaller units will produce larger counts) pq HoM:Explore and generalize a pattern

7
? 1 wav 1 arro ? wavs ? arros Concept:Conservation (recognizing smaller units will produce larger counts)

8
1 wav 1 arro 3.7 wavs 7 arros Concept:Conservation (recognizing smaller units will produce larger counts) Concept:Measurement involves iterating a unit

9
1 wav 1 arro 3.7 wavs 9.6 arros Concept:Units must be consistent Concept:Inverse relationship between the size of a unit and the numerical count Concept:Measurement involves iterating a unit Concept:Conservation (recognizing smaller units will produce larger counts)

10
True or False: If the volume of a rectangular prism is known, then its surface area can be determined. Item 2

11
True or False: If the volume of a rectangular prism is known, then its surface area can be determined. Revote 2

12
True or False: If the volume of a rectangular prism is known, then its surface area can be determined. HoM: Reasoning with Change and Invariance Concept: Volume = Length Width Height

13
This misunderstanding appears to come from an incorrect over-generalization of the very special relationship that exists for a cube.” (NCTM, 2000, p. 242) “[S]ome students may hold the misconception that if the volume of a three-dimensional shape is known, then its surface area can be determined.

14
True or False: If the surface area of a sphere is known, then its volume can be determined. Item 3

15
True or False: If the surface area of a sphere is known, then its volume can be determined. Revote 3

16
True or False: HoM: Reasoning with Formulas Concept:A = 4 r 2 V = 4/3 r 3 If the surface area of a sphere is known, then its volume can be determined.

17
True or False: If the area of an equilateral triangle is known, then its perimeter can be determined. Item 4

18
True or False: If the area of an equilateral triangle is known, then its perimeter can be determined. Revote 4

19
L/2 L True or False: If the area of an equilateral triangle is known, then its perimeter can be determined. HoM: Reasoning with Relationships CU: Area = ½LH H L L = ½L [L 2 – (L/2) 2 ] 0.5 = ½L (0.75L 2 ) 0.5 = ½L (0.75) 0.5 L 0.433L 2

20
True or False: As we increase the perimeter of a rectangle, the area increases. Item 5

21
True or False: As we increase the perimeter of a rectangle, the area increases. Revote 5

22
True or False: As we increase the perimeter of a rectangle, the area increases. HoM: Seeking causality

23
True or False: As we increase the perimeter of a rectangle, the area increases. 8 m 4 m Concept:Perimeter = 2L + 2W ; Area = LW 16 m 2 m HoM: Seeking counter-example

24
True or False: As we increase the perimeter of a rectangle, the area increases. 8 m 4 m 12 m 2 m 16 m 1 m 20 m 0.5 m HoM: Reasoning with change and invariance Concept:Perimeter = 2L + 2W ; Area = LW

25
“While mixing up the terms for area and perimeter does not necessarily indicate a deeper conceptual confusion, it is common for middle-grades students to believe there is a direct relationship between the area and the perimeter of shapes and this belief is more difficult to change. In fact, increasing the perimeter of a shape can lead to a shape with a larger area, smaller are, or the same area.” (Driscoll, 2007, p. 83)

26
Consider this two-dimensional figure: 4 cm 10 cm 7 cm Note: Each corner is a right angle.

27
Consider this two-dimensional figure: Item 6 4 cm 10 cm 7 cm Which measurement can be determined? (A) Area only (B) Perimeter only (C) Both area and perimeter (D) Neither area nor perimeter Note: Each corner is a right angle.

28
Revote 6 Consider this two-dimensional figure: 4 cm 10 cm 7 cm Which measurement can be determined? (A) Area only (B) Perimeter only (C) Both area and perimeter (D) Neither area nor perimeter Note: Each corner is a right angle.

29
4 cm 10 cm 7 cm HoM: Reasoning with Change and Invariance

30
Consider this two-dimensional figure: Item 7 Which measurement can be determined? (A) Area only (B) Perimeter only (C) Both area and perimeter (D) Neither area nor perimeter 4 m 10 m 3 m Note: The two horizontal lines are parallel.

31
Revote 7 Consider this two-dimensional figure: Which measurement can be determined? (A) Area only (B) Perimeter only (C) Both area and perimeter (D) Neither area nor perimeter 4 m 10 m 3 m Note: The two horizontal lines are parallel.

32
Consider this two-dimensional figure: HoM: Reasoning with Change and Invariance 4 m Note: The two horizontal lines are parallel.

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google