Presentation is loading. Please wait.

Presentation is loading. Please wait.

Inquiry-based Curriculum Reform from Faculty Learning Communities Nancy Shapiro and David May, University System of Maryland Philip Sokolove, University.

Similar presentations

Presentation on theme: "Inquiry-based Curriculum Reform from Faculty Learning Communities Nancy Shapiro and David May, University System of Maryland Philip Sokolove, University."— Presentation transcript:

1 Inquiry-based Curriculum Reform from Faculty Learning Communities Nancy Shapiro and David May, University System of Maryland Philip Sokolove, University of Maryland Baltimore County Supported by NSF’s Mathematics and Science Partnership program 1

2  University System of Maryland institutions:  Univ. of Maryland, College Park  Univ. of Maryland, Baltimore County  Towson University  Univ. of Maryland Biotech Institute Context: A partnership of diverse institutions  K-12:  Montgomery County Schools (140,000 students)  2-year higher education:  Montgomery College The Vertically Integrated Partnerships project (VIP K-16) was a 5-year Math Science Partnership grant from NSF. The main purpose of VIP K-16 was to improve science instruction and curriculum in Maryland high schools and universities. It created learning communities of teachers and faculty in which they developed their inquiry pedagogy skills and science content knowledge by learning from each other, and developed new curricula for science based on inquiry pedagogy. 2

3 Context: Diverse programs of the partnership Professional development and curriculum guides for high school: Teacher- and faculty-designed professional development and associated curriculum guides for 350 high-school science teachers Undergraduates in high school classrooms: We have created a mentoring/internship program that matches university biology majors with MCPS high school teachers. This project involved students from UMCP and UMBC. Graduate students as mentor teachers: We created a program for a few science grad students at UMCP to become master teaching fellows and mentor their peers in inquiry instruction. High school teachers as science researchers: This program has provided summer internships for MCPS high-school teachers in biology research labs at UMBI. The teachers formed a learning community focused on understanding real science inquiry and how to bring it into their instructional practice. Faculty learning communities to design science curricula: The focus of this poster. 3

4 Towson University:  17 science faculty met monthly to share ideas about their own courses and instruction.  Pairs of faculty met more frequently on specific reforms. Montgomery College:  An experienced science teacher (who was also adjunct faculty) mentored dozens of faculty through private meetings, classroom observations, and syllabus review.  Special seminars and department meetings focused on inquiry-based curriculum reform and consolidated the participants in a community of practice. University of Maryland, Baltimore County:  Bi-annual colloquia brought together faculty and area teachers.  Collaborative partnerships of faculty, teachers, and grad students produced many changes. University of Maryland, College Park:  Key faculty and administrative leaders brought together a group of faculty to design new “Marquee” courses that focus on the science of contemporary issue. The Learning Community strategy 4

5  STEM faculty involved: 100  Undergraduate courses – revised or completely new: 30  Examples of inquiry-based reforms:  New laboratory exercises or entire lab manuals  New grading rubrics for student lab reports  New lecture-hall-based active engagement lessons  New textbook  Guides for new instructors of reformed courses  Lesson plans designed around a case-study approach  Titles of some of the new courses:  “The Science of Networks”  “Engineering Issues in Medicine”  “Biogenesis: Making a Habitable Planet”  “Physics for Decision Makers” Some learning-community outcomes 5

6  Biology 100 at UMBC - typically students per lecture  An experiment: In one semester, the course had small in-class groups of 4-6 students; in another semester, groups were not possible. In this context, extensive interactive engagement is difficult, so “Active- learning Lite” techniques were developed by Dr. Phil Sokolove: 1. Raised Name Signs with large lettering 2. Peer Interaction (Think-Pair-Share with neighbors, with or without clickers) 3. Student Role-Play activities 4. CD Animations (with pause for discussion) 5. Encourage Student Questions 6. Discussion Board forums using Blackboard software environment The two semesters were compared: full active learning and “active learning lite.” Example: Active learning without small groups in introductory biology 6

7  The first 5 methods are used in class to promote an active learning environment.  The Blackboard Discussion Board extends active learning to the out-of- class environment -- provided that the instructor monitors, but does NOT contribute to discussion board interaction by jumping into answer students' content questions.  Wait time: If one waits long enough (discussion-board equivalent of "wait time"), other students almost always volunteer to answer a question.  Process questions: The ONLY thing the instructor should do is to ask for the source of the answering student's "facts" (and also encourage students to google for information -- surprisingly enough, they don't usually), and then ask them how they determined how reliable their source was. Example (continued): Discussion of “Active learning lite” techniques 7

8 Survey Results: % of Students Responding Positively to Active- Learning Components (significant differences in green) (Fall 2004, n=235 ; Spring 2005, n=288) Example (continued): “Active learning lite” is okay with students 8 A-L Component Fall, A-L LiteSpring, A-L Full Name Signs 50%42% Peer Interaction 78%80% Student Role-Play 75%72% CD Animations 68% Student Questions 80%79% Blackboard 68%80%

Download ppt "Inquiry-based Curriculum Reform from Faculty Learning Communities Nancy Shapiro and David May, University System of Maryland Philip Sokolove, University."

Similar presentations

Ads by Google