Download presentation

Presentation is loading. Please wait.

Published byIsabel Berry Modified over 2 years ago

1
Weak Lensing Tomography Sarah Bridle University College London

2
3d vs 2d (tomography) Non-Gaussian -> higher order statistics Low redshift -> dark energy versus

3
Weak Lensing Tomography 1.In principle (perfect zs) Hu 1999 astro-ph/9904153 2.Photometric redshifts Csabai et al. astro-ph/0211080 3.Effect of photometric redshift uncertainties Ma, Hu & Huterer astro-ph/0506614 4.Intrinsic alignments 5.Shear calibration

4
1. In principle (perfect zs) Qualitative overview Lensing efficiency and power spectrum –Dependence on cosmology Power spectrum uncertainties Cosmological parameter constraints

5
1. In principle (perfect zs) Core reference Hu 1999 astro-ph/9904153 See also Refregier et al astro-ph/0304419 Takada & Jain astro-ph/0310125

6
Cosmic shear two point tomography

7

8

9

10
(Hu 1999)

12
Lensing efficiency (Hu 1999) Equivalently: g i (z l ) = ∫ z l n i (z s ) D l D ls / D s dz s i.e. g is just the weighted D l D ls / D s

13
Can you sketch g 1 (z) and g 2 (z)? (Hu 1999) g i (z) = ∫ z s n i (z s ) D l D ls / D s dz s

14
Lensing efficiency for source plane?

16
(Hu 1999)

17
Sensitivity in each z bin

18
NOT

19
(Hu 1999) Why is g for bin 2 higher? A. More structure along line of sight B. Distances are larger g i (z d ) = ∫ z s 1 n i (z s ) D d D ds / D s dz s

21
* *

22
Lensing power spectrum (Hu 1999)

23
Lensing power spectrum Equivalently: P ii (l) = ∫ g i (z l ) 2 P(l/D l,z) dD l /D l 2 i.e. matter power spectrum at each z, weighted by square of lensing efficiency (Hu 1999)

25
Measurement uncertainties 1/2 = rms shear (intrinsic + photon noise) n i = number of galaxies per steradian in bin i (Hu 1999) Cosmic Variance Observational noise

26
(Hu 1999)

27
Sensitivity in each z bin

28
NOT

29
(Hu 1999)

30
Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7

31
Approximate dependence Increase 8 → A. P ↓ B. P ↑ Increase z s → A. P ↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE ( K =0) → A. P ↓ B. P ↑ Increase w → A. P ↓ B. P ↑ Huterer et al

32
Effect of increasing w on P Distance to z –A. Decreases B. Increases

33
Perlmutter et al.1998 Fainter Further away Decelerating Accelerating m =1, no DE m =1, DE =0) == ( m = 0.3, DE = 0.7, w DE =0)

34
Perlmutter et al.1998 EdS OR w=0 w=-1 Fainter, further Brighter, closer

35
Effect of increasing w on P Distance to z –A. Decreases B. Increases –When decrease distance, lensing effect decreases Dark energy dominates –A. Earlier B. Later

38
Effect of increasing w on P Distance to z –A. Decreases B. Increases –When decrease distance, lensing decreases Dark energy dominates –A. Earlier B. Later Growth of structure –A. Suppressed B. Increased –Lensing A. Increases B. Decreases Net effects: –Partial cancellation decreased sensitivity –Distance wins

39
Approximate dependence Increase 8 → A. P ↓ B. P ↑ Increase z s → A. P ↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE ( K =0) → A. P ↓ B. P ↑ Increase w → A. P ↓ B. P ↑ Huterer et al

40
Approximate dependence Increase 8 → A. P ↓ B. P ↑ Increase z s → A. P ↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE ( K =0) → A. P ↓ B. P ↑ Increase w → A. P ↓ B. P ↑ Huterer et al Note modulus

41
Which is more important? Distance or growth? Simpson & Bridle

42
Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7

43
(Hu 1999)

44
See Heavens astro-ph/0304151 for full 3D treatment (~infinite # bins)

45
(Hu 1999)

46
Parameter estimation for z~2 (Hu 1999)

47
Predict the direction of degeneracy in w versus m plane

48
Refregier et al SNAP3

49
(Hu 1999)

50
Takada & Jain

51
(Hu 1999)

52
Covariance matrix P 12 is correlated with P 11 and P 22 (ignoring trispectrum contributions) Takada & Jain

54
How many redshift bins to use? Ma, Hu & Huterer 5 is enough Modified from

55
Higher order statistics

56
Takada & Jain

58
Geometric information Jain & Taylor; Kitching et al. Slide stolen from Tom Kitching www.astro.dur.ac.uk/Cosmology/SISCO/edin_talks/Kitching.PPT

59
Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

60
Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

61
Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

62
Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

63
Some additional tomographic methods Cross-correlation cosmography –Bernstein & Jain astro-ph/0309332 Galaxy-lensing cross correlation –Hu & Jain astro-ph/0312395 Reconstruction of distance and growth –Song; Knox & Song

Similar presentations

OK

Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.

Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google