Presentation is loading. Please wait.

Presentation is loading. Please wait.

Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department.

Similar presentations


Presentation on theme: "Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department."— Presentation transcript:

1 Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department of Chemistry University of Oslo

2 Charge, Orbital and Spin Ordering Charge Ordering (T CO ) –T > T CO  Delocalized Electrons  Single oxidation state –T < T CO  Localized Electrons  Distinct oxidation states Orbital Ordering (T OO ) –Preferential (anisotropic) occupation of given d-orbitals –Cooperative Jahn-Teller distortion Spin Ordering (T N or T C ) –Long range magnetic ordering Mixed Valency (Robin & Day Classification) –Type III  Metallic e - transport  Single oxidation state –Type II  Activated e - transport  Two oxidation states at a given instant, but CO pattern is fluctional –Type I  Insulating  Two oxidation states, with a regular (long range) CO pattern

3 Ba 2 (Bi 4+ ) 2 O 6  Ba 2 (Bi 3+ Bi 5+ )O 6 Cox & Sleight (1976) High T c Superconductivity in Oxides Fe 3+ (Fe 2.5+ ) 2 O 4  Fe 3+ (Fe 2+ Fe 3+ )O 4 Verwey (1939) Double Exchange Ferromagnetism LaCa(Mn 3.5+ ) 2 O 6  LaCa(Mn 3+ Mn 4+ )O 6 Wollan, Koehler & Goodenough (1955) Colossal Magnetoresistance (CMR) Examples of Charge Ordering

4 Charge Ordering in Nd 0.5 Sr 0.5 MnO 3 T = 160 K Valence Mixed State T = 60 K Charge Ordered State Synchrotron X-ray Powder Diffraction Data (NSLS-X7A) A series of weak superstructure reflections arise (1% intensity at the strongest) that indicate doubling of the a -axis. Woodward, Cox, Vogt, Rao, Cheetham, Chem. Mater. 11, (1999).

5 Examples of Orbital Ordering 2  2.18 Å 2  1.91 Å 2  1.94 Å 2  2.07 Å LaMnO 3 (298 K) Rodriguez-Carvajal, et al. Phys. Rev. B 57, R3189 (1998). NdSrMn 2 O 6 (50 K) Woodward, et al. Chem. Mater. 11, (1999). Mn 3+ Mn 4+ 4  1.90 Å

6 Orbital Ordering & Cooperative Jahn-Teller Distortions d(x 2 -y 2 ) d(z 2 ) Mn 3+ e g (  *) t 2g (  *) Regular Octahedron Axially Elongated Octahedron

7 Examples of Orbital Ordering 2  2.18 Å 2  1.91 Å 2  1.94 Å 2  2.07 Å LaMnO 3 (298 K) Rodriguez-Carvajal, et al. Phys. Rev. B 57, R3189 (1998). NdSrMn 2 O 6 (50 K) Woodward, et al. Chem. Mater. 11, (1999). Mn 3+ Mn 4+ 4  1.90 Å

8 Orbital Ordering in Nd 0.5 Sr 0.5 MnO 3 Upon cooling below 150 K, the a & c-axes expand and the b-axis contracts. This is the signature of orbital ordering Woodward, Cox, Vogt, Rao, Cheetham, Chem. Mater. 11, (1999).

9 Oxygen Deficient Double Perovskites RBaFe 2 O 5+w R = Trivalent Rare Earth Ion –Nd, Sm, Tb, Ho, Y –Changing the radius of the R ion, controls the layer spacing M = 1 st row Transition Metal Ion –V, Mn, Fe, Co, Cu –Changing M, alters the electron count and covalency of the M-O bonds. 0  w  ~ 0.7 –Excess oxygen resides in R layer –The upper limit of w is dictated by the ionic radius of R –w=0  M +2.5, w=0.5  M +3 –changes the local coordination of the transition metal ion from 5 to 6

10 Synthesis REBaFe 2 O 5 The sample is dehydrated at ~180 °C. The sample is then heated at ~400 °C to drive off the organic content and produce an amorphous precursor. The precursor is calcined ( °C) and then sintered at high temperature ( °C) in a carefully controlled pO 2 atmosphere. The sintered pellets are heated at a lower temperature ( °C) in a controlled atmosphere to attain the desired oxygen content. RE 2 O 3 + Citric Acid Fe 2 O 3 + Nitric Acid BaCO 3 Amorphous Organic- Inorganic Precursor Heat & Stir

11 Powder Diffraction Data Collection Synchrotron X-ray Powder Diffraction –NSLS - X7A (Dave Cox, Tom Vogt) –NSLS – X3B (Peter Stephens, Sylvina Pagola) –ESRF – BM1B (Swiss-Norwegian Beamline) Neutron Powder Diffraction –NIST – BT1 (Brian Toby) - YBaFe 2 O 5 –ILL – D2B (Emmanuel Suard) - HoBaFe 2 O 5 & NdBaFe 2 O 5 –PSI - HRPT (Peter Fischer) - TbBaFe 2 O 5 –ANSTO – MRPD (Andrew Studer) - TbBaFe 2 O 5 Neutron Thermodiffractometry –ILL – D20 (Emmanuel Suard) - HoBaFe 2 O 5 & NdBaFe 2 O 5 Mossbauer Spectroscopy –Abo Akademi (Johan Linden)

12 DSC Electrical Resistivity T>T PM Mössbauer shows one Fe 2.5+ signal (Type III MV) T PM >T>T CO Mössbauer signal begins to split Fe 2.5+x + Fe 2.5-x (Type II MV) T CO > T Mössbauer shows Fe 2+ + Fe 3+ (Type I MV, Charge Ordered State) IIIIII T CO T pm Karen, Woodward, Santhosh, Vogt, Stephens, Pagola, J. Solid State Chem. 167, 480 (2002).

13 TbBaFe 2 O 5 Type III MV Structure Temperature 350 K Space Group Pmmm a (4) Å b (4) Å c (8) Å Bond Valences Ba 1.98 Tb 2.88 Fe 2.52 O(x) 1.94 O(y) 1.95 O(z) 2.05 Fe-O Distances 2  (6) [O y ] 2  (5) [O x ] 1  (7) [O z ] Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, (2001).

14 TbBaFe 2 O 5 Synchrotron X-ray Superstructure Reflections indicate a doubled a-axis Space Group = Pmma Superstructure reflections are stronger when R = Nd Superstructure reflections are very difficult to observe in neutron powder patterns. Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, (2001).

15 TbBaFe 2 O 5 Neutron Diffraction Rietveld refinements of neutron powder diffraction data confirm charge ordered structure, TbBaFe 3+ Fe 2+ O 5. Mixed Valence Model Charge Ordered Model Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, (2001).

16 TbBaFe 2 O 5 Type I CO Structure 2.134(4)Å 2.046(5)Å 1.965(4)Å Fe 2+ BVS=2.37 x 2 -y 2 z2z2 xy yz xz x 2 -y 2 z2z2 xz xy yz 2.134(4)Å 1.965(4)Å 1.975(1)Å 1.895(6)Å Fe 3+ BVS=2.76 Temperature 70 K Space Group Pmma a8.0575(2) Å b (6) Å c7.5526(2) Å 1.962(1)Å

17 TbBaFe 2 O 5 Magnetic Scattering T > T co Magnetic Cell 2a  2b  2c 7.88Å  7.87Å  15.17Å T < T co Magnetic Cell 2a  2b  c 8.05Å  7.70Å  7.55Å The charge ordering induces a rearrangement of the antiferromagnetic structure!

18 TbBaFe 2 O 5 MV State (T>T CO ) Magnetic Structure AFM Coupling in ab Plane Isostructural with YBaFeCuO 5 Fe-O-Fe Superexchange AFM Fe-Fe Direct Exchange FM FM AFM AFM

19 TbBaFe 2 O 5 CO State (T

20 Charge & Spin Ordering in YBaM 2 O 5 YBaMn 2 O 5 T CO > 300 K (CB) P4/nmm T C = 165 K (Ferri) Millange, et al. Mater. Res. Bull. 1999, 34, 1. YBaFe 2 O 5 T CO > 308 K (ST) Pmma T N = 430, 308 K Woodward, Karen Inorg. Chem. 2003, 42, YBaCo 2 O 5 T CO > 220 K (ST) Pmma T N = 330 K Vogt, et al. PRL 2003, 84, 2969.

21 Orbital Ordering in YBaM 2 O 5 YBaMn 2 O 5 P4/nmm xzyz xy z2z2 x 2 -y 2 xzyz xy z2z2 x 2 -y 2 Mn 3+ Mn 2+ YBaFe 2 O 5 Pmma xzyz xy z2z2 x 2 -y 2 xzyz xy z2z2 x 2 -y 2 Fe 3+ Fe 2+ YBaMn 2 O 5 Pmma xzyz xy z2z2 x 2 -y 2 xzyz xy z2z2 x 2 -y 2 Co 3+ Co 2+

22 Phase Transitions – RBaFe 2 O 5 Paramagnetic to Antiferromagnetic ( K) –YBaFeCuO 5 Type AFM Order –Small Magnetostrictive coupling leads to a subtle Tetragonal to Orthorhombic Distortion Premonitory Charge Ordering ( K) –Subtle charge localization can be seen in DSC & Mossbauer, but not in diffraction measurements –Mixed valency changes from Type I to Type II Long Range Charge Ordering ( K) –Induces a large orbital ordering transition –Orbital ordering stabilizes a stripe CO pattern –Stabilizes G-type Antiferromagnetic order (changes the sign of the Fe-Fe direct exchange)

23 Changing the size of the RE ion modifies the Fe-Fe distance. Fe-Fe Dist.Ave. Fe-O Dist. Fe-O-Fe  Ho Y Tb Sm Nd Ho Y Tb SmNd Ho Y Tb Sm Nd Structural Evolution: REBaFe 2 O 5

24 Phase Transitions vs. R size T CO As the radius of the R ion increases –T CO (MV II  MV I) decreases significantly. –T PM (MV III  MV II) decreases more gradually. –T N1 changes very little. Type III Mixed Valent Type I Charge Ordered Type II

25 Volume Change at T CO Volume change at T CO (MV II  MV I) PmmaP2 1 ma

26 Thermodiffractometry (ILL-D20) Woodward, Karen, Suard, J. Amer. Chem. Soc. 125, 8889 (2003). Pmma Pmmm HoBaFe 2 O /02 0 T(K) G G G NdBaFe 2 O 5 P2 1 ma Pmmm / theta M M MM T(K)

27 HoBaFe 2 O 5 Unit Cell Evolution 1 K Temperature grid, 1 min collection time No noticeable change at T PM Woodward, Karen, Suard, J. Amer. Chem. Soc. 125, 8889 (2003). P4/mmm to Pmmm at T N

28 Woodward, Karen, Suard, J. Amer. Chem. Soc. 125, 8889 (2003). NdBaFe 2 O 5 Unit Cell Evolution 1 K Temperature grid, 1 min collection time

29 Orbital Ordering (RE = Nd, Ho) Orthorhombic distortion saturates at T pm for NdBaFe 2 O 5. Similar behavior is not observed for HoBaFe 2 O 5 Orthorhombic distortion increase at T CO is much larger in HoBaFe 2 O 5.

30 RBaFe 2 O 5 (R=Tb, Y, Ho) YBaFeCuO 5 AFM Structure Fe-Fe Coupling T CO G-Type AFM Structure Fe-Fe Coupling Antiferromagnetic NdBaFe 2 O 5 YBaFeCuO 5 AFM Structure Fe-Fe Coupling T CO YBaFeCuO 5 AFM Structure Fe-Fe Coupling Ferromagnetic Magnetism vs. Temperature T CO

31 Nd Magnetism in NdBaFe 2 O 5 Nd moment is ~1.2  B at 2 K, T N (Nd) ~ 30 K No rare-earth magnetic order for R = Ho. Nd magnetism is induced by Fe magnetism.

32 Structural Tuning in RBaFe 2 O 5 As the radius of the R ion increases (R = Ho-Sm) –The spacing across the R-layer increases –T CO decreases significantly, T PM decreases more gradually –T N1 changes very little –Patterns of charge, orbital and spin order remain constant NdBaFe 2 O 5 The large size of Nd has several effects –Disrupts the ideal pattern of orbital ordering The CO structure has P2 1 ma symmetry rather than Pmma The volume change at T CO is anomalous The orthorhombic distortion parameter saturates at T PM –Decouples the magnetic and charge order There is no rearrangement of the magnetic structure at T CO –Destabilizes the long range charge order T CO is much lower than other members of the series


Download ppt "Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department."

Similar presentations


Ads by Google