Presentation is loading. Please wait.

Presentation is loading. Please wait.

Man and machines: Insights into ventilation strategies May 2006 Dr Geoff Shaw Dept of Intensive Care Christchurch Hospital Clin Sen Lecturer Dept of Medicine.

Similar presentations


Presentation on theme: "Man and machines: Insights into ventilation strategies May 2006 Dr Geoff Shaw Dept of Intensive Care Christchurch Hospital Clin Sen Lecturer Dept of Medicine."— Presentation transcript:

1 Man and machines: Insights into ventilation strategies May 2006 Dr Geoff Shaw Dept of Intensive Care Christchurch Hospital Clin Sen Lecturer Dept of Medicine CSM&HS University of Otago, NZ Senior fellow Dept of Mechanical Engineering, University of Canterbury, NZ

2 The ventilator is our identity

3 Mechanical ventilation has been used clinically for about 80 years….. First there was 

4 Polio in California Negative pressure ventilation…

5 The ventilator is our identity Then there was 

6 Dr H Lassen at Copenhagen’s Blegdams Hospital Positive Pressure Ventilation: 90% death rate  90% survival

7 PEEP 1967First report of ARDS: Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress syndrome in adults. Lancet; 1967,(II) First formal investigation of the effect of PEEP  Improved PaO2 by applying 0-15cm PEEP in 10 patients with ARDS. Putative mechanism  prevention of airway closure Falke KJ, Pontoppidan H, Kumar A et al Ventilation with end-expiratory pressure in acute lung disease; J Clin Invest 1972, 51:2315–2323

8 1975“Optimum PEEP” Defined as best O 2 transport (CO X O 2 content)  highest compliance of respiratory system. Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975; 292:284–289 “Super PEEP”  that which produces minimal shunt Kirby RR, Downs JB, Civetta JM et al. High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 1975; 67:156– “Minimal PEEP”  2cm higher than lower inflection point of inflation limb of the pressure volume curve Lemaire F, Harf A, Simonneau G et al [Gas exchange, static pressure volume curve and positive-pressure ventilation at the end of expiration. Study of 16 cases of acute respiratory insufficiency in adults]. Ann Anesthesiol Fr 1981;22:435–441 PEEP

9 PV Curve Radford EP (1957) Recent studies of the mechanical properties of mammalian lungs. In: Remington JW (ed) Tissue elasticity American Physiological Society Washington, pp 177–190 Lower inflection point Upper inflection point

10 VILI Webb & Tierney ARRD 1974;110;556 PIP=14, PEEP=0PIP= 45, PEEP=10PIP= 45, PEEP = 0

11 Other therapies 1979“ECMO”: NIH trial 90% mortality in both groups. High volumes and pressures Zapol WM, Snider MT, Hill JD et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 1979;242:2193– ’s “ECO 2 R” (Extracorporeal CO2 removal) Concept of “lung rest” Normal gas exchange targets  Unacceptable complications especially bleeding Gattinoni L, Agostoni A, Pesenti A et al. Treatment of acute respiratory failure with low-frequency positive pressure ventilation and extracorporeal removal of CO2. Lancet 1980;II:292–294 Gattinoni L, Pesenti A, Mascheroni D et al. Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 1986; 256:881–886

12 Concepts of ARDS in 1980’s Lungs homogeneous, heavy and stiff  Normalise pCO 2 by use of high pressures and volumes  Use of PEEP to normalise pO 2  Barotrauma = “complication”  Major concerns were haemodynamic impairments caused by PEEP

13 “Baby Lung” Quantitative assessment of CT images in ARDS.  amount of normally aerated tissue = 5-6 yr old child Gattinoni L, Pesenti A, The concept of the “baby lung”. Intensive Care Med; 2005:31:

14 “Baby Lung” Gattinoni L, Pesenti A, Baglioni S et al. Inflammatory pulmonary edema and positive end-expiratory pressure: correlations between imaging and physiologic studies. 1988; J Thorac Imaging 3:59–64 Respiratory compliance correlates with amount of normally aerated tissue

15 Bone RC The ARDS lung. New insights from computed tomography. JAMA 1993; 269:2134–2135 Gattinoni L, Pesenti A, The concept of the “baby lung”. Intensive Care Med; 2005:31: “Sponge Lung” Assumes lung oedema in ARDS is evenly distributed throughout the lung from sternum to vertebrae. (not gravitationally dependent). Gas in dependent regions is squeezed out by superimposed pressure including the weight of the heart

16 Superimposed pressure Opening Pressure Alveolar Collapse (Reabsorption ) 40-60cmH 2 O Small Airway Collapse 10-20cmH 2 O Inflated 0 ) (modified from Gattinoni) Consolidation 

17 “Permissive hypercapnia” 1990Low tidal volumes to rest lung; CO 2 levels allowed to permissively rise  Changed the goals of ventilation Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990; 16:372–377

18 Permissive hypercapnia Late ’90’s: clinical trials of low tidal volume ventilation Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lo-Physirenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338:347– patients Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301– patients Stewart TE, Meade MO, Cook DJ, Granton JT, Hodder RV, Lapinsky SE,Mazer CD, McLean RF, Rogovein TS, Schouten BD, et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med 1998;338:355– patients Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondejar E, Clementi E, Mancebo J, Factor P, Matamis D, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. Multicenter Trial Group on Tidal Volume Reduction in ARDS. Am J Respir Crit Care Med 1998;158:1831– patients Brower RG, Shanholtz CB, Fessler HE, Shade DM, White P Jr, Wiener CM, Teeter JG, Doddo JM, Almog Y, Piantadosi S. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999;27:1492– patients

19 Confusion and controversy ! Eichacker PQ,. Gerstenberger EP, Banks SM, Cui X, Natanson C. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med Vol 166. pp 1510–1514, 2002

20 Lung recruitment in ARDS 68 patients with ARDS:  Highly variable % potentially recruitable lung 13% ±11%  % potentially recruitable correlated with % lung maintained after application of PEEP  Higher % potentially recruitable lung correlated with: Lung weight P a O 2 /FIO 2 ratio Compliance Dead space Mortality Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006;354:

21

22

23 Mortality relates to recruitable lung Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006;354:

24 Lung recruitment in ARDS Gattinoni L Am J Respir Crit Care Med 2001; 164:1701–1711 Lower inflection point ? Upper inflection point

25 Over-stretch = “Volutrauma” Ventilation induced lung injury (VILI) Epithelial and endothelial cells are anchored to the lung “skeleton” Gattinoni L, Pesenti A, The concept of the “baby lung”. Intensive Care Med; 2005:31: Bunched up collagen fibres Elastin fibres

26 Stress and strain Stress = K (Youngs module of material) x Strain Stress= P L (transpulmonary pressure) Strain = V t (Δ Lung Vol) / “baby lung” (volume at ZEEP) K= E spec (Specific lung elastance) Hence: E spec = P L x Baby Lung / V t E spec = Transpulmonary Pressure at which the EELV doubles (~12-13cm normally)

27 Gattanoni’s hypothesis... If… E spec is constant within narrow limits in ARDS Then… An estimate of stress and strain can be made by knowing either size of “baby lung”, or P L (Neither are measured routinely in ICU)

28 “Volutrauma”: Volume–dependent elastance E2 Bersten AD. Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 1998; 12: 526–532. Linear portion; constant compliance; independent of volume (E1) Non-linear portion; volume dependent compliance (E2) Pressure Volume Paw = Airway pressure E1 = volume- independent respiratory elastance E2 = Volume-dependent component of elastance VT = tidal volume Po = static recoil pressure at end- expiration PEEP (tot)

29 VEI = End expiratory volume above resting volume = safe zone = dangerous overstretched zone Bersten AD. Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 1998; 12: 526–532. “Volutrauma”:

30 = safe zone = dangerous overstretched zone %E2 was >30% in 50% of data where Pel <30 cm! Bersten AD. Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 1998; 12: 526–532. Pel,dyn =Dynamic elastic airway pressure “Volutrauma”:

31 Airway Pressure-time curves a =the slope of the P-t relation at t = 1 s c = the pressure at t = 0. b = dimensionless number  shape of the P-t curve During inspiration, if: b <1, P-t curve is convex; ↑ compliance b >1 P-t curve is convex; ↓ compliance b =1 P-t curve is straight; ↔compliance Ranieri VM, Zhang H, Mascia L, et al. Pressure–time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 2000; 93:1320–8

32 Airway Pressure-time curves Ranieri VM, Zhang H, Mascia L, et al. Pressure–time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 2000; 93:1320–8

33 Hypothetical model of P plateau vs V t ~based on meta analysis of 5 trials of low volume ventilation Eichacker PQ,. Gerstenberger EP, Banks SM, Cui X, Natanson C. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med Vol 166. pp 1510–1514, 2002

34 Condom model demonstrating intrapulmonary stresses Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28: “Atelectasis” as modelled by applying negative pressure to a condom surrounded by an “alveolar pressure” of 20 cmH 2 O Under-stretch = “Atelectrauma”

35 Shear forces in the zone of lung opening, caused by stretching of densely distributed alveolar membranes, obliquely attached to bronchiolar basal membranes Jonson B. Elastic pressure-volume curves in acute lung injury and acute respiratory distress syndrome Intensive Care Med 31:205–212, 2005, with permission from: Jonson B (1982) In: Prakash O (ed) Applied physiology in clinical respiratory care. Nijhoff, The Hague, pp 123– 139 “Atelectrauma”

36 Atelectasis = Stress Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28: Mead and colleagues have postulated that: P eff =-P L (V/V 0 ) 2/3 Where P L = P alv - P pl P L = transpulmonary pressure, P alv = alveolar pressure, P pl = pleural pressure V = Inflated volume, V 0 = collapsed volume Consider inflating a partially collapsed lung to P L =30cmH 2 O. Let the volume of the degassed region be 1/10 of its final inflated volume. PL is therefore amplified by 10 2/3 Thus the initial pressure tending to expand the atelectatic region is: 30 x 10 2/3 = 140 cm H2O !!

37 Surfactant depletion in pig model Courtesy of Gary Nieman, Syracuse NY  Recruitment occurs throughout static inflation Alveolar wall stress in 2-D condom model  Wall areas stressed next to regions of hyperiflation and collapse

38 Hickling KG: Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 2002, 8:32–38 Published with permission from: Rimensberger PC, Cox PN, Frndova H, et al.: The open lung during small tidal volume ventilation: Concepts of recruitment and “optimal” positive end expiratory pressure. Crit Care Med 1999, 27:1946–1952. Saline-lavaged rabbits Solid lines show re-inflation plots after deflation from 30 cm H 2 O airway pressure to different end- expiratory pressures. Little hysteresis with deflation to 15 cm H 2 O,  little derecruitment above that pressure. Deflation /re-inflation PV curves

39 P/-V Tool 2 Start/Stop Cursor 2 Cursor 1 Actual Settings P-start cmH2O P-top cmH2O end PEEP cmH2O Ramp speed cmH2O/s T-pause s T-total s Settings Close Xxxxxxxxx erttrert Xxxxxxxxx erttrert Xxxxxxxxx erttrert P V 2000-/ :33:34 Plot History 1 / 5 Cursor 1Cursor 2C cursor Insp. limb100 / 5900 / Exp. limb155 / / Current settings Total time To open setting window Start/Stop button Cursor buttons To open Plot window To select and view stored curves Date & time Stored curves Expiratory limb (yellow) Assist lines Inspiratory limb (green) Data of insp. limb Data of Exp. limb Compliances for both red lines Cursor 2 for both limbs Cursor 1 for both limbs

40 Hickling KG. Using the expiratory pressure volume curve- VILI at the bedside. 25 th Symposium of Intensive Care and Emergency Medicine, March 21-25, 2005 Galileo datalogger: Inflation deflation method Flow Pressure

41 Hickling KG. Using the expiratory pressure volume curve- VILI at the bedside. 25 th Symposium of Intensive Care and Emergency Medicine, March 21-25, 2005 Galileo datalogger: Inflation deflation method Pressure Volume

42 Models of threshold opening and closing pressures Inspiratory tidal PV plots Incremental = black symbols Decremental = open symbols TOP = 0–40, TCP = 0–4. At each PEEP level the volume at equivalent pressures and the mean tidal PV slope are greater during decremental PEEP. Hickling KG: Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 2002, 8:32–38 Redrawn from: Hickling KG: Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 2001, 163:69–78

43 Models of threshold opening and closing pressures Hickling KG: Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 2001, 163:69–78 The mean tidal PV slope plotted against PEEP Incremental PEEP = black symbols Decremental PEEP = open symbols Max PV slope with: Incremental PEEP is at 20 cm H 2 O Decremental PEEP is at 16 cm H2O

44 Models of threshold opening and closing pressures Hickling KG. Using the expiratory pressure volume curve- VILI at the bedside. 25 th Symposium of Intensive Care and Emergency Medicine, Brussels, Belgium, March 21-25, 2005 Simulated data Max change in slope corresponds to beginning of de-recruitment But very difficult to judge slope changes by eye especially when very steep Hence a flow pressure curve can indicate the max rate of de-recruitment Flow pressure curves

45 Hickling KG. Using the expiratory pressure volume curve- VILI at the bedside. 25 th Symposium of Intensive Care and Emergency Medicine, March 21-25, 2005 Galileo datalogger: Flow-Pressure Flow Pressure Derecruitment

46 Hickling KG: Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 2002, 8:32–38 Redrawn from: Crotti S, Mascheroni D, Caironi P, et al.: Recruitment and de-recruitment during acute respiratory failure: A clinical study. Am J Respir Crit Care Med 2001, 164:131–140. Models of threshold opening and closing pressures (A)Airway pressure vs volume /recruited volume determined from CT (open circles and dotted line; expressed as percent of maximum volume) and recruitment (black circles and solid line; expressed as percent maximum recruitment) (B) Frequency distribution of estimated opening pressures. Note that recruited volume continues throughout inflation, up to 50 cm H 2 O pressure.

47 TOP TCP Pressure Number of Units Skewed normal distribution Unique to a patient and condition Recruitment is described by Threshold Opening Pressure (TOP) Derecruitment is described by Threshold Closing Pressure (TCP) Real-time acquisition of threshold opening and closing pressures Chase J, Yuta T, Shaw G, Horn B, Hann C A minimal model of mechanically ventilated lung mechanics to optimise ventilation therapy in the treatment of ARDS in critical care. Proceedings of the 12 th International Conference on Bioengineering, Singapore 2005

48 Unique distributions for different levels of PEEP are found PEEP TOP TCP Chase J, Yuta T, Shaw G, Horn B, Hann C A minimal model of mechanically ventilated lung mechanics to optimise ventilation therapy in the treatment of ARDS in critical care. Proceedings of the 12 th International Conference on Bioengineering, Singapore 2005

49 Optimisation of ventilation Parameter identification = patient specific model Simulation to determine effect of settings on PV curve Optimise ventilator settings as desired

50

51 ‘Strengths’ in using this approach….. Real time assessment of recruitment status which is dependent on PEEP, ventilation strategy, and disease Readily identifies TCP distributions  optimization of PEEP Provides opportunity to simulate a ventilation strategy before application. TOP distribution characteristics  Prediction of “overstretch”. E.g. Δ recruitment < % max rate  ? Correlated with E2% or CT scan

52 Although flow resistive forces through the endotracheal tube are accounted for, the model assumes the pressure at the carina will reflect what is happening to alveolar units. Unforeseen resistive changes (eg major bronchial airway obstruction) could therefore lead to incorrect inferences about recruitment status Limitations… Needs to be clinically validated

53 A model for teaching and research Mechanical lung model with 6 units of variable compliance (weighted) bellows and variable insp /exp resistances (taps)

54 Mimicking nature 5cm PEEP15cm PEEP Sponsored by NZ$8000 grant from Hamilton Medical, Switzerland

55 Mimicking nature Normal PV loop PV loop of “Asthma”PV loops at different levels of PEEP (Note tidal volume is referenced to zero volume) Chase JG, Yuta T, Shaw GM, Mulligan K, Hann CE. A novel mechanical lung model of pulmonary diseases to assist with teaching and research (in review )

56 Mind what you have learned. Save you it can.

57 Acknowledgements Dr Chris Hann Assoc. Prof. Geoff Chase Toshi Yuta Kerry Mulligan Beverley Horn

58


Download ppt "Man and machines: Insights into ventilation strategies May 2006 Dr Geoff Shaw Dept of Intensive Care Christchurch Hospital Clin Sen Lecturer Dept of Medicine."

Similar presentations


Ads by Google