Download presentation

Presentation is loading. Please wait.

Published byGerald Dalton Modified about 1 year ago

1
Search for Lorentz invariance using a torsion-strip balance Clive Speake, Hasnain Panjwani and Ludovico Carbone. Rencontres de Moriond, La Thuile, 23 rd March 2011.

2
Outline The torsion-strip balance at BIPM and Birmingham. Design of a search for Lorentz violation signal: Polarised, non-magnetic masses. Test of Lorentz invariance in gravitational sector. Future improvements.

3
Torsion-strip balances At BIPM in 1990’s, whilst investigating internal damping mechanisms in flexures, we examined ribbon suspensions. All torsion fibres have two contributions to their stiffness. In the case of rectangular fibres: b is width, t is thickness, L is length, M is supported mass, F is shear modulus. Ratio of thermal s/n for torsion-strip balance to that in round fibre balance ~ ~ 20 for BeCu with r = 10 m and max = 800 MPa. ~ 3 x 10 5, period 123 s, drift 1 rad/week. b t

4
Apparatus used to determine G at BIPM 1.2kg test masses Autocollimator Carousel for 12kg source masses Three determinations with partially correlated uncertainties: Free deflection Electrostatic servo Time-of-swing T.J.Quinn et al PRL 2001realised by Harold Parks whilst at BIPM

5
Current Status of G

6
Assembling the torsion balance

7
The torsion-strip balance at Birmingham Initial goal was to search for Lorentz invariance violating forces coupling to intrinsic spin. We aimed at exploiting the superior thermal signal-to-noise of the torsion strip with ~4 kg of test mass. We looked for a scalable way of making spin-polarised non-magnetic test masses. We decided to use a combination of Sm Co and Nd B Fe magnets rather than Dy Fe (Ritter et 1990) and SmCo/Alnico (Heckel et al 2006) because of convenience and potentially higher spin density.

8
Nested Spheres Nested Cylinders -Matlab images from 2d analysis using FEM software – FEMM 4.2 -Also used 3d analysis with ANSYS. Hasnain Panjwani logB (T)

9
Search for preferred frame effects Variation in G reported by Gershteyn of 5x10 -4 over 12 sidereal hours. Kosteleckỳ proposed Lorentz and CPT violation as a by-product of quantum gravity Jan Sun Earth Primordial vector field Lorentz transform into Earth frame wrt to Solar system Kosteleckỳ and Tasson PRL 2009

10
Measurement technique move source masses from one position to the other every 800s any movement is a measurement of G: 108 “G measurements” per day alternatively move position of the source masses around the pendulum look at the coherent modulation of the pendulum equilibrium angle

11
“Cleaning” the data from imperfection in sampling rate or incorrect readings of the autocollimator Convert data to torque using quadratic fitting Filter out possible residuals of pendulum resonance (~120 s) Low pass filtering the data (to eliminate high frequency noise >0.1Hz) Data analysis procedure. Ludovico Carbone

12
Multi-linear fitting

13
Investigate coupling to environmentals Example: measurement of coupling to temperature variation High coupling!!! on purpose!

14
“memory kernel” effect from temperature Sensitive also to Tilt X, Tilt Y, Pend eq. angle, Source Mass position mutual relations between environmentals A.R.M.A. fitting S.V.D. Estimation and subtraction of environmental effects

15
(…things are much better….)

16
Subtraction of environmental signals from “science” data Effect on first ~ 80 days data

17
Fitting to search for sidereal related signals Preliminary results on first ~ 80 days data

18
Statistical errors at ppm level, null result for ~24h signal, ~3 null result for ~12h Preliminary results on first, 80 days data ~ Autumn (3 months) Total 8500 datapoints Fitting to search for sidereal related signals 24 sidereal hours 12 sidereal hours Carbone et al Marcel Grossmann 2009

19
Preliminary results: No preferred frame effect (12 hour) is observed at level of few (Gershteyn et al detected G/G ~ ) Preliminary upper limit on one of Kostelecky’s parameters ( 24hr 1 st time) Further development required: extend/improve data analysis better temperature control in quieter room. new interferometric readout (< rad Hz -1/2 ) overcome the C.V. Boys’ fallacy. Panjwani et al CPT

20
Design and construction of angle interferometer (insensitive to tilt of rotating mirror over 1 o or so). Reinstall experiment in quieter basement room with better possible temperature control. Peña-Arellano CS App Opt 2011Lost ~ 5 months due to vacuum problems

21
Heckel et al PRD 2008 We need the spin-compensated test masses (prototype in process). We need a rotating platform to maximise the s/n. Limited by autocollimator above few Hz. Using the interferometer the thermal noise is within our reach. Current status of spin-coupling experiment

22
Summary We are developing a torsion-strip balance to search for spin-related forces. We have placed upper limits on possible sidereal variations of G by direct measurement. Further improvement is possible in s/n and data analysis. With more work and investment the experiment has the potential to make a contribution to our knowledge of long range spin-coupling forces. Thank you for your attention and STFC for funding the experiment..

23
Current sensitivity with autocollimator

24

25
Nested Spheres “Cleanest” solution (dipole field!) Easy to match magnetic moments Alignment issues Manufacturing issues Two possible solutions Nested Cylinders Simpler to manufacture Mechanically stable & self aligning Mag. multipole moment expansion to null low order moments Non negligible leakage field Class. Quantum Grav. 26 (2009) Hasnain Panjwani

26

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google