Download presentation

Presentation is loading. Please wait.

Published byDalia Bailiff Modified over 2 years ago

1
Statistics-MAT 150 Chapter 1 Introduction to Statistics Prof. Felix Apfaltrer fapfaltrer@bmcc.cuny.edu Office:N518 Phone: x7421

2
Chapter 1 Overview Nature of data Skills needed in statistics

3
Overview Statistics: Descriptive –Analyze nature of data from surveys, experiments, observations, Inferential –Draw conclusions from the analyses with respect to the population Survey: tool to collect data from a smaller group which is part of a larger group to learn something about the larger group Key goal of statistics: Learn about a large group (population) from data from from a smaller subgroup (sample)

4
Overview Definitions: Data: observations collected (measurements, gender, answers,…) Statistics: collection of methods to analyze data Population: complete collection of elements (scores, measurements, subjects,…) Sample: subcollection of members from selected population Census: collection of data from every member of the population

5
Overview 2 Example: Poll: 1087 adults are asked whether they drink alcoholic beverages or not. –Sample: 1087 adults –Population: US adults 150 million. Census: Every 10 years, the census bureau tries to collect information from every member of the US population. –Impossible! –Very expensive! Use sample data to draw conclusions from whole population: inferential statistics!

6
Types of data Parameter: A numerical measurement describing some characteristic of the population. Lincoln elected: 39.82% of 1,865,908 votes counted. –39.82% is a parameter. Statistic: A numerical measurement describing some characteristic of the sample. Based on a sample of 877 elected executives, 45% would not hire an applicant with a typographical error in the application. –45% is a statistic.

7
Types of data 2 Quantitative data:Numbers representing counts or measurements. Weights of supermodels. Qualitative data: Nonnumerical. Gender of an athlete. Discrete vs. continuous data # of people in a household vs. temperatures in May. Nominal level of measurement: names, labels categories: no ordering. Yes/No/Undecided responses, colors. Ordinal level of measurement: some order, but numerical values meaningless or nonexistent. Course grades A, B, C, D, F. “Livability rank of a city”. Interval level of measurement: order, but “no 0” or meaningless. Temperature, year. Ratio level of measurement: as before with meaningfull zero. Weights, prices (non-negative).

8
Basic skills Samples: representative: “39/40 polled people vote for A” Sampled in A’s headquarters! Not too small: CDF published “among HS students suspended, 67% suspended more than 3 times” Sample size: 3! Percentage of: 6 % of 1200 = 6 / 100 * 1200 = 72% Fraction >>> percentage: 3/4 = 0.75 >>> 0.75 * 100% = 75 % Graphs: In which one does red do better? Percentage >>> decimal: 27.3% = 27.3/100 = 0.273 Decimal >>> percentage: 0.852 >>> 0.852 * 100% = 85.2% `

9
Basic skills 2 Calculator:

10
Design Observational study: observe and measure characteristics without trying to modify subjects. Gallup poll. Cross-sectional: data observed, measured at one point in time. Retrospective: data are collected from the past (records) Prospective: data collected along the way from groups (smokers/NS) Experiment: apply treatment and observe and measure effects. Clinical trial for Lipitor. Control: blinding - placebo, double-blinding, blocks Replication: ability to repeat experiment Randomization: data needs to be collected in an appropriate (random) way, otherwise it is completely useless! –Random sample: members of the population are selected so that each individual member has the same chance of being selected. –Simple random sample of size n : every possible random sample of size n has the same chance of being chosen.

11
Design 2 Sampling: systematic: select starting point and every k th member chosen. convenience: use easy to get data stratified: subdivide population into at least 2 subgroups with common characteristic and draw samples from each (e.g. gender or age) cluster: divide population into areas and draw samples form clusters Sampling error: the difference between a sample result and the true population result; results from chance sample fluctuations Nonsampling error: occurs when data is incorrectly collected, measured, recorded or analyzed.

Similar presentations

OK

Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 1-1 Statistics for Managers Using Microsoft ® Excel 4 th Edition Chapter.

Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 1-1 Statistics for Managers Using Microsoft ® Excel 4 th Edition Chapter.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on electricity from waste heat Ppt on new technology in electrical engineering Ppt on regular expression examples Ppt on business etiquettes in france Training ppt on leadership Ppt on business plan of amway Ppt on introduction to production and operation management Ppt on going concern concept Ppt on national parks of india Ppt on technology used in space to search for life and water