Presentation is loading. Please wait.

Presentation is loading. Please wait.

® Micro-tremor Analysis in Seismic Reflection Data

Similar presentations


Presentation on theme: "® Micro-tremor Analysis in Seismic Reflection Data"— Presentation transcript:

1 Tatiana Chichinina , tichqvoa@yahoo.com
Micro-tremor Analysis in Seismic Reflection Data for Identification of Oil and Gas Reservoirs Tatiana Chichinina , Instituto Mexicano del Petróleo (IMP) Eugeny Hogoev IPGG Russian Academy of Sciences Alfonso Reyes-Pimentel UNAM EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

2 The method is based on the phenomenon of natural seismic emission associated with Micro-Tremors of Hydrocarbon reservoirs in the subsurface of the Earth. This Hydrocarbon Microtremor is also called by Lambert et al. (2013 ) as “Ambient Wavefield Modification caused by a Hydrocarbon reservoir”. The method is based on the phenomenon of natural seismic emission associated with hydrocarbon reservoirs in the subsurface of the Earth. This Natural Seismic Emission is called Micro-Tremors of Hydrocarbons. Ambient wavefield modification caused by a hydrocarbon reservoir (Lambert et al., 2013). Lambert M.-A., Saenger E.H., Quintal B., and Schmalholz S.M., 2013, Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir, GEOPHYSICS, 78, T41–T52. EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

3 with application to field data.
Method. Frequency band of micro-tremors. Updated Method with application to field data. Physical reasons of micro-tremors . My topic of presentation is the following: Method, Frequency band of micro-tremors, Updated Method with application to field data, and Physical reasons of micro-tremors . EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

4 with application to field data.
Method Frequency band of micro-tremors. Updated Method with application to field data. Physical reasons of micro-tremors . My topic of presentation is the following: Method, Frequency band of micro-tremors, Updated Method with application to field data, and Physical reasons of micro-tremors . EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

5 The advantage of the method (proposed by Vedernikov, 2001) is that the input data for the analysis can be extracted from the conventional seismic reflection data. Thus, the method is of easy field-data acquisition compared to other passive seismic methods. The method is based on spectral analysis of micro-tremors linked to the presence of hydrocarbons. The advantage of the method (proposed by Vedernikov, 2001) is that the input data for the analysis can be extracted from the conventional seismic reflection data. Thus, the method is of easy field-data acquisition compared to other passive seismic methods. EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

6 Long offsets and early times
The methodology consists of the use of raw seismic records at early times and far offsets. These portions of the seismic traces contain information prior to the arrival of the waves generated by artificial source. The methodology consists of the use of raw seismic records at early times and far offsets. These portions of the seismic traces contain information prior to the arrival of the waves generated by artificial source. In the subsection “Updated Method” I shall talk on this additional part of seismogram (shown here and marked by number 2) used for the analysis of micro–tremors. 6 Additional part of seismogram used for the analysis of micro -tremors EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014 6

7 Spectral analysis of micro-tremors linked to the presence of hydrocarbons
Bh1 [10 Hz ; 20 Hz] The end result is spectral amplitude values of micro-tremors ​​for different frequency ranges shown along the seismic line, that is to say depending on the position of the receiver. You can note that the maximum intensity of the amplitude spectrum is observed in in the frequency interval from 10 Hz to 20 Hz. Here it is shown one of our results. That is to say, the end result is spectral amplitude values ​​for different frequency ranges depending on the position of the receiver at seismic line (profile). You can note that in the frequency interval from 10 Hz to 20 Hz, it is the maximum intensity of the spectrum observed in this segment of seismic line. Then, when the well was drilled here, it has provided high rate of gas production. EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

8 with application to field data
Method Frequency band of micro-tremors Updated Method with application to field data Physical reasons of micro-tremors In our method, the frequency band of micro-tremors is estimated up to 20 Hz, these frequencies are higher than those in conventional passive methods. In conventional methods of analysis of Micro-Tremors, it has been observed that natural micro-seismic response in areas of oil and gas reservoirs exhibit certain characteristic behavior, with the maximum amplitude-spectrum energy at lower frequencies, between 1.5 and 6 Hz. In our method the higher frequencies can be explained by the effect of vibro-seisms’ stimulation of oil and gas reservoirs (or the stimulation due to explosions in shot points during field-data acquisition). EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

9 In other methods of Hydrocarbon Microtremor Analysis (HyMA), It has been observed that natural micro-tremor response in areas of oil and gas reservoirs exhibit certain characteristic behavior, with the maximum amplitude-spectrum energy at lower frequencies, in the interval from 1.5 Hz to 6 Hz. This frequency range of the Micro-Tremors is the same for different oil-gas fields . Note that in those methods there are no any sources used for excitation of artificial waves such as reflected waves in our case. In our method, which we present here, we use conventional seismic data, which is reflected waves originated from the excitation by artificial sources such as vibrators or explosions. That is why the frequencies of Micro-Tremors are lifted up to 20 Hz comparing with the frequencies in the methods of Passive Seismic Exploration. In other methods, which are the passive methods, it has been observed that the maximum amplitude-spectrum energy of Micro-Tremors is in the interval from 1.5 Hz to 6 Hz. Note that this frequency range of the Micro-Tremors is the same for different oil-gas fields all over the world. All these methods are so-called passive methods, because there are no any man-made sources (such as vibrators or explosions) used for excitation of waves. In our method, which we present here, we use conventional seismic data, which is reflected waves originated from artificial sources such as vibrators or explosions. That is why the frequencies of Micro-Tremors are lifted up to 20 Hz comparing with the frequencies in the passive methods. EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

10 the HMT frequency band is from 1.5 Hz to 4 Hz
Dangel et al. (2003) Journal of Volcanology and Geothermal Research State of the art In different (other) methods of analysis of the Hydrocarbon Micro-Tremors (HMT), the HMT frequency band is from 1.5 Hz to 4 Hz Se ha observado la prevalencia de ciertas frecuencias en los espectros de microsismos debido a la presencia de hidrocarburos. United Arab Emirates (UAE) Switzerland UAE In different (other) methods of analysis of the hydrocarbon Micro- Tremors, The frequency band is from 1.5 Hz to 4 Hz The HMT frequency band is from 1.5 Hz to 4 Hz EAGE – Amsterdam – 19 of June 2014 10 EAGE Amsterdam, 19 0o June 2014 10 10

11 Case Study in México, Burgos gas/oil field
Saenger et al., 2009 Case Study in México, Burgos gas/oil field No hydrocarbons Hydrocarbons Aquí es uno ejemplo mas de microsismos de hidrocarburos observados en la Cuenca de Burgos en México. Se ha encontrado la prevalecía de frecuencias fijas , del intervalo de 1,5 Hz a 6 Hz sobre los yacimientos de aceite. Y como se puede ver, en el caso de ausencia de hidrocarburos el espectro se concentra en el rango de 1 Hz y menos. The frequency band is from 1.5 Hz to 5 Hz Saenger E.H., Schmalholz S.M., Lambert M.-A., Nguyen T.T., Torres A., Metzger S., Habiger R.M., Müller T., Rentsch S. and Méndez-Hernández E., 2009, A passive seismic survey over a gas field: Analysis of low-frequency anomalies. Geophysics, 74, p. O29-O40. 11 EAGE Amsterdam, 19 0o June 2014 11

12 Natural micro-tremor spectral response of oil and gas reservoir
Holzner, et al., , 2006 Natural micro-tremor spectral response of oil and gas reservoir Hydrocarbon Microtremor Analysis (HyMAS) The ever-present seismic background noise of the earth acts as the driving force for the generation of hydrocarbon indicating signals. The seismic background noise spectrum is modified in a different way when interacting with geological structures containing hydrocarbon filled pores compared with interaction with similar structures not containing hydrocarbons . There were performed numerous efforts to understand the causes of this phenomenon of microseisms related to oil and gas. Nowadays there is no unique theory which perfectly explains all the aspects of this phenomenon. However in spite of absence of a unified theory, various methods of MS spectral analysis are rapidly developed for seismic exploration of oil and gas. The ever-present seismic background noise of the earth acts as the driving force for the generation of hydrocarbon indicating signals. The seismic background noise spectrum is modified in a different way when interacting with geological structures containing hydrocarbon filled pores compared with interaction with similar structures not containing hydrocarbons . EAGE – Amsterdam – 19 of June 2014 12 EAGE Amsterdam, 19 0o June 2014

13 In the method presented here, the micro-tremor anomalies lie in the
frequency range from 0 Hz to 20 Hz. Processing flow of the Analysis of the spectrums of micro-tremors:   Selection of the appropriate portions of traces from CRP gathers,   Application of rejection criteria for removing noisy records,   Implementation of Fast Fourier Transform,   Estimation of mean value of Amplitude Spectra in each frequency range, in function of the position of the receiver, --with the subsequent amplitude smoothing, as it shown here: before smoothing and after.. Before smoothing After smoothing The following signal-processing sequence is applied in each point of seismic line. It includes spectrum amplitude smoothing , as it shown here. After smoothing, we can localize spectrum amplitude anomaly in the certain segment of seismic line. As you can see, the frequency range of these anomalies lie in the frequency range from 0 to 20 Hz. [0; 20 Hz] EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

14 Microtremors after excitation with a seismic vibrator
Serdyukov and Kurlenya (2007) Hydrocarbon-microtremors’ frequencies after excitation by seismic vibrator Amplitude spectrum Serdyukov S.V., Kurlenya M.V., 2007, Seismic stimulation of oil reservoirs // Russian Geology and Geophysics. v. 48, №11, p from 22 Hz to 30 Hz From 11 Hz to 16 Hz Frequency Serdyukov S.V., Kurlenya M.V., 2007, Seismic stimulation of oil reservoirs // Russian Geology and Geophysics. v. 48, №11, p [in Russian]. 14

15 After stimulation with vibrator, not only the frequency growth is observed, but also the intensity of hydrocarbon micro-tremors’ emission. Hydrocarbon microtremors’ amplitudes: before and after excitation with vibrator 5 minutes after excitation Before excitation Amplitude spectrum Vedernikov G.V., Zharkov A.V., Maksimov L.A., 2001, An experience in the analysis of the geodynamics´ microseisms or/and hydrocarbon tremors: Geofizika, Special issue on 30 years of “Sibneftegeofizika”, p [in Russian]. Receiver coordinate along seismic line [m] Vedernikov et al. 2001 EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

16 Stimulation experiment of hydrocarbon microtremors with vibrators
Vedernikov et al. 2001 Stimulation experiment of hydrocarbon microtremors with vibrators Before excitation 5 minutes after excitation а –запись микросейсм до вибровозбуждения; б – запись микросейсм через 5 мин после вибровозбуждения. Заметим, что скважина номер 60 оказалось продуктивной и дала промышленный приток газа, тогда как скважина 816 (за контуром ) оказалось чисто водоносной. Рисунок из работы [Ведерников и др., 2001]. Vedernikov G.V., Zharkov A.V., Maksimov L.A., 2001, Results on the analysis of the Earth hydrocarbon tremors: Geofizika. Special issue on 30 years of “Sibneftegeofizika”, p [in Russian]. 16 EAGE Amsterdam, 19 0o June 2014 16

17 Vedernikov et al. 2001 Stimulation of hydrocarbon micro-tremors after vibrator (vibro-seisms) excitation Vedernikov G.V., Zharkov A.V., Maksimov L.A., 2001, Results on the analysis of the Earth hydrocarbon tremors: Geofizika. Special issue on 30 years of “Sibneftegeofizika”, p.96-98 [in Russian]. 17

18 with its application to field data
Method Frequency band of micro-tremors Updated method with its application to field data Physical reasons of micro-tremors EAGE – Amsterdam – 19 of June 2014

19 The new approach: Long offsets and early times
  Area 1 – before the first arrivals of waves The new approach: Long offsets and late times Additional part of seismogram is used for the analysis of micro-tremors EAGE – Amsterdam – 19 of June 2014 19 EAGE Amsterdam, 19 0o June 2014 19

20 To improve the method, we propose using the late-time portion of seismic traces, additionally to the earliest-time portion. We consider that in the seismic records at large times of arrival (that is several seconds , for example 3.5 sec in this case), the artificial-wave energy has been attenuated to such a degree that the dominant response provides us pure natural micro-seismic response. This enables us separating natural hydrocarbon micro tremors from reflected waves… Our development of the method is based on use of traces at the latest times as an input data, additionally to using the early-times´ portions as in the original method of Vedernikov. We assume that after 3.5 s of active seismic records, the attenuation of active seismic waves took place and so that the main portion of energy came exclusively from microseisms. So, from each common shot point gather, we use those parts of seismic traces, which enter into the zone marked by number 2 shown the Figure. To evaluate the developed method, we compare its results with the old method that is the original method of Vedernikov. The amplitude spectra calculated with using late times show higher contrasts in frequency anomalies in comparison with the original method. And also it allows us to find anomalies not identified before by the original methodology. EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

21 Comparison The new approach Input data: The earliest-time
portions of seismic traces Input data: The late-time portions of seismic traces EAGE – Amsterdam – 19 of June 2014 21 EAGE Amsterdam, 19 0o June 2014 21

22 Amplitude-spectrum map of micro- tremors
Well Bh-1 Zoomed fragment (b). Pair of intersected seismic profiles (W-E and N-S) EAGE – Amsterdam – 19 of June 2014

23 with application to field data
Method Frequency band of micro-tremors Updated Method with application to field data Physical reasons of micro-tremors EAGE – Amsterdam – 19 of June 2014

24 Why hydrocarbon reservoirs have the micro-tremor-emission spectrum
of low frequency? What is the physical reason of it? EAGE – Amsterdam – 19 of June 2014

25 And water-saturated fractures do not cause it... Why?
Why the micro-fractures saturated with oil or gas cause the low-frequency micro-tremors’ emission ? And water-saturated fractures do not cause it... Why? Why microfractures saturated with oil or gas exhibit emission of micro-tremors? And water-saturated fractures do not cause it... Why?

26 There were performed numerous efforts to understand the causes of this phenomenon of microseisms related to oil and gas. Nowadays there is no unique theory which perfectly explains all the aspects of this phenomenon. However in spite of absence of a unified theory, various methods of MicroTremor spectral analysis are rapidly developed for seismic exploration of oil and gas. The ever-present seismic background noise of the earth acts as the driving force for the generation of hydrocarbon indicating signals. The seismic background noise spectrum is modified in a different way when interacting with geological structures containing hydrocarbon filled pores compared with interaction with similar structures not containing hydrocarbons . EAGE – Amsterdam – 19 of June 2014

27 R. Holzner, P. Eschle, H. Zürcher, M. Lambert, R. Graf,
Current investigations which combine the macroscopic aspects of Krauklis wave* propagation, as well as the microscopic poro-mechanical amplification mechanism, are expected to provide major steps towards the complete understanding of the occurrence of Hydrocarbon Microtremor signals (Holzner et al, 2005). (*) Korneev (2008, 2010, 2011), Korneev et al (2004, 2009, 2012) on Krauklis wave . Goloshubin, G.M. et al. [1993] Slow Wave Phenomenon at Seismic Frequencies. 63th Annual International SEG Meeting, Washington DC, SL4.6, Korneev, V.A., Goloshubin, G.M., Daley, T.M., and. Silin, D.B [2004] Seismic low-frequency effects in monitoring fluid-saturated reservoirs. Geophysics, 69, R. Holzner, P. Eschle, H. Zürcher, M. Lambert, R. Graf,  S. Dangel and P.F. Meier, 2005, Applying microtremor analysis to identify hydrocarbon reservoirs  First Break, V. 23, No 5, May 2005 EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

28 Krauklis, P. V., 1962, About some low frequency oscillations of a liquid layer in elastic medium: Prikladnaya Matematika i Mekhanika, 26, 1111–1115. Korneev, V.A., Goloshubin, G.M., Daley, T.M., and. Silin, D.B, 2004, Seismic low-frequency effects in monitoring fluid-saturated reservoirs. Geophysics, 69, Korneev, V., 2008, Slow waves in fractures filled with viscous fluid: Geophysics, 73, no. 1, N1–N7. Korneev, V., 2010, Low-frequency fluid waves in fractures and pipes: Geophysics, 75, no. 6, N97–N107. Korneev, V., 2011, Krauklis wave in a stack of alternating fluid- elastic layers: Geophysics, 76, no. 6, N47–N53. Korneev, V., G. Goloshubin, B. Kashtan, A. Bakulin, V. Troyan, G. Maximov, L. Molotkov, M. Frehner, S. Shapiro, and R. Shigapov, 2012, Krauklis wave — Half a century after: 74th Annual International Conference and Exhibition, EAGE, Extended Abstracts, B008. Korneev, V. A., A. A. Ponomarenko, and M. Kashtan, 2009, Stoneley guided waves: What is missing in Biot’s theory?: Proceedings of the fourth Biot conference on poromechanics: DEStech Publications Inc., 706–711. Korneev (2008, 2010, 2011), Korneev et al (2004, 2009, 2012) EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

29 Lambert et al. (2013) consider a possible mechanism causing Hydrocarbon Microtremor signals, which can be understood within the framework of a poro-mechanical amplification mechanism driven by the ever present seismic background noise that resonantly enhances low frequency seismic signals due to the interaction of liquid hydrocarbons, and pore-rock material. The resulting oscillations are transmitted from the reservoir to the surface almost without attenuation or scattering losses due to the low frequency. In recent years a growing number of studies have reported significant amounts of continuous P-wave energy in low-frequency ambient wavefield recordings. It has been argued that these body waves originate offshore and may be attributed to ocean-wave energy coupling with the ground (e.g., Zhang et al., 2009). Moreover, seismic slow signals have been identified, using networks of high sensitivity surface and borehole seismometers that record continuously in the frequency band of to 100 Hz (e.g., Peng and Gomberg, 2010, and references therein). Seismic slow signals are generated when slip on faults does not reach dynamic velocities, but low-amplitude, low-frequency seismic waves are still radiated (Peng and Gomberg, 2010). Therefore, low-frequency body waves propagating from depth toward the surface interacting with reservoirs should be expected in broadband seismic field recordings. Lambert M.-A., Saenger E.H., Quintal B., and Schmalholz S.M., 2013, Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir, GEOPHYSICS, 78, T41–T52. EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

30 Following Lambert et al (2013), poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields. Wave-induced fluid flow at the mesoscopic scale in an oil reservoir is a physical mechanism that can cause significant attenuation contrast to the surrounding rocks. As a physical consequence of this model, ambient wavefield modifications are generated by the reservoir. Above the oil-saturated reservoir EAGE – Amsterdam – 19 of June 2014 EAGE Amsterdam, 19 0o June 2014

31 Lambert, M.-A., T. Nguyen, E. H. Saenger, and S. M. Schmalholz, 2011,
Lambert, M.-A., E. H. Saenger, B. Quintal, and S. M. Schmalholz, 2013, Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir: Geophysics, 78, no. 1, T41–T52. Lambert, M.-A., T. Nguyen, E. H. Saenger, and S. M. Schmalholz, 2011, Spectral analysis of ambient ground-motion—Noise reduction techniques and a methodology for mapping horizontal inhomogeneity: Journal of Applied Geophysics, 74, 100–113, doi: /j.jappgeo Artman, B., M. Duclos, B. Birkelo, F. Huguet, J. F. Dutzer, and R. Habiger, 2011, Low-frequency seismic survey at a gas storage reservoir: 73rd Annual Conference and Exhibition, EAGE, Extended Abstracts, P331. Riahi, N., B. Birkelo, and E. H. Saenger, 2011, A statistical strategy to analyzing passive seismic attributes: 73rd Annual Conference and Exhibition, EAGE, Extended Abstracts, P198. EAGE – Amsterdam – 19 of June 2014

32 Steiner, B. , E. H. Saenger, and S. M
Steiner, B., E. H. Saenger, and S. M. Schmalholz, 2008, Time reverse modeling of low-frequency microtremors: Application to hydrocarbon reservoir localization: Geophysical Research Letters, 35, L03307. van Mastrigt, P., and A. Al-Dulaijan, 2008, Seismic spectroscopy using amplified 3C geophones: 70th Annual Conference and Exhibition, EAGE, Extended Abstracts, B047. Witten, B., and B. Artman, 2011, Signal-to-noise estimates of timereverse images: Geophysics, 76, no. 2, MA1–MA10. EAGE – Amsterdam – 19 of June 2014

33 in oil saturated rock and water- saturated rock
Acoustic emission after stimulation by ultrasonic excitation in oil saturated rock and water- saturated rock Kuznetsov , Dyblenko, Chirkin et al Water Oil Acoustic emission after vibration excitation in oil saturated rock and water- saturated rock Нормированная автокореляционная функция временного ряда сигналов акустической эмиссии, при волновом воздействии, для нефтенысыщенных (Oil) и водонасыщенных (Water) кернов. Рисунок из работы [Кузнецов, Дыбленко, Чиркин, 2007]. Kuznetsov O.L. , Dyblenko V.P. , Chirkin I.A. et al , 2007, Osobennosti akkumulirovaniya energii mekhanicheskikh napryazheniy i anomal'noye seysmo - akusticheskoye izlucheniye v nefte-gazonasyshchennykh porodakh : Geofizika , 6, Kuznetcov O.L., Dyblenko V.P., Chirkin I. A., Sharifullin R.Y., Volkov A.V., 2007, Peculiar properties of the energy storage in geomechanical stress and the anomalous seismic-acoustic emission in the oil and gas-bearing rocks, Geofizika, 6, p [in Russian]. Kuznetsov O.L. , Dyblenko V.P. , Chirkin I.A. et al , 2007, Specific features of geomechanical-stress accumulation and anomalous seismic-acoustic emission in oil and gas-saturated rocks : Geofizika , 6, 8-15 33 33

34 E I Acoustic emission stimulated by ultrasonic pulses III II Energy
Kuznetsov , Dyblenko, Chirkin et al 2007 Stimulation by ultrasonic wave pulses E Oil-saturated rocks III 10 I II Water sarurarted rocks Application of mechanical loading 8 6 Energy Dry rocks 4 After stimulation 2 t [s] Time 34

35 Dr. Irek Fayzullin hypothesizes that the primary mechanism of hydrocarbon micro-tremor (HMT) is the “in-situ” effect of "disclosure-closing" of microcracks in the subsurface of the earth. The potential elastic energy of the micro-tremor emission is accumulated at the ends of each crack in the form of stress anomalies. Through this mechanism, the potential energy is transformed into kinetic energy, i.e.–into the micro-tremor emission; the maximum energy is released at the moment of crack closing. Every day, some of fractures are "active ", i.e. they are closing and disclosing to the state of unstable equilibrium. (*) Fayzullin I.S. , Kutsenko N.V. , 2004, The feasibility of using the scattered waves for the study of fractured geomedium. Numerical simulation: Geofizika, № 5, p.5-9. D'yakonov B.P., I.S. Fayzullin, 2009, Response of fractured (consisted of block units) media to seismic-acoustic excitations and/or natural microseisms. Part I. Evolution of cracks under variable manmade and natural loading: Geofizika, № 3, p I.S. Fayzullin, B.P. D'yakonov, R.S. Khisamov, R.KH. Muslimov, N.V. Kutsenko, 2006,  On the impact of seismic-acoustic excitation on flooded oil reservoirs: Tekhnologii seysmorazvedki, № 3 . I.S. Fayzullin, A.V. Seregin, A.V. Volkov, 2013, On the connection of the energy of the scattered waves to the physical characteristics of rocks. Seismic side-scanning method (SLBO): Geofizika, № 4. (*) Fayzullin I.S. , Kutsenko N.V. , 2004, The feasibility of using the scattered waves for the study of fractured geomedium. Numerical simulation: Geofizika, № 5, p.5-9. D'yakonov B.P., I.S. Fayzullin, 2009, Response of fractured (consisted of block units) media to seismic-acoustic excitations and/or natural microseisms. Part I. Evolution of cracks under variable manmade and natural loading: Geofizika, № 3, p

36 Seismic monitoring of the open-fracture variation in reservoir rocks
During the micro-fracures’ growth, these micro-fractures are opening, and then they are closing in the subsequet stage of rock compaction, and this can be the main cause of microtremors. (D'yakonov and Fayzullin, 2009) Micro-tremors occur due to the fractures´ growth with its subsequent decrease in growth and partial closing. Thus the increase and decrease of fractures´ growth takes place due to in-situ temporal stress variations . That is in-situ stress-induced rock compaction and de-compaction variations, which can be considered as the main cause of micro-tremors. Seismic monitoring of the open-fracture variation in reservoir rocks due to Linisolar Tides. Kouznetsov, Chirkin, et al 2006 =Mareas Lunisolares de la Tierra solida Kouznetsov O.L., I.A. Chirkin, Y.A. Kuryanov, A.S. Zhoukov, A.V. Volkov, Meltchouk B.Y, I.I. Bogatsky, G.A. Belova, 2006b, Seismic monitoring the variations of open fracturing of reservoir rocks due to Linisolar Tides. EAGE 68th Conference & Exhibition — Vienna, Austria, June 2006, D035. During the fracture growth the micro-fractures are open; and then they can be closed in the stage of rock compaction, and this can be the main cause of micro tremors ... (a)– horizontal section (b) – vertical section 36

37 And water-saturated fractures do not cause it... Why?
Why the micro-fractures saturated with oil or gas cause the low-frequency micro-tremors’ emission ? And water-saturated fractures do not cause it... Why? Why microfractures saturated with oil or gas exhibit emission of micro-tremors? And water-saturated fractures do not cause it... Why?

38 D'yakonov B.P., I.S. Fayzullin, 2009, Response of fractured (consisted of block units) media to seismic-acoustic excitations and/or natural microseisms. Part I. Evolution of cracks under variable manmade and natural loading: Geofizika, № 3, p The process of the microtremors´ (MT) emission occurs constantly in the subsurface and it never attenuates. It is differentiated in space and time by the average energy, variance and frequency of events of the MT emission . In turn, these statistics parameters are dominantly determined by such factors as dynamic state of stress, in-situ geo-mechanical properties and the type of saturation fluid (gas, water, or oil) in microfractures . The fluid type effects to the MT-emission frequency, which is different due to different magnitude of fluid-penetration rate, that is different penetration ability for filtrating into the cavity of closing crack for each fluid (e.g. oil or water). Presence of fluid results in acceleration of the process of disclosure of fracture and its transition into unstable state . A speed of penetration of fluid in crack is determined by the phase-permeability coefficient. The higher is the phase-permeability coefficient of fluid, the more frequent is the act of microtremors´ emissions, and so the higher MT-emission frequency is observed.

39 D'yakonov and Fayzullin, 2009
The coefficient of permeability of the fluid phase of water is larger than this coefficient of oil. And so the water opens and enters into the closed microcracks more quickly compared to the case of oil saturated cracks ... Therefore, the maximum of microtremors’ spectrum over oilfields shifts towards more lower frequencies compared to the frequencies over water-filled cracks. That is, in other words, the water-saturated cracks make the cycle of opening -closing and making claps (while doing this) more frequently, in comparison with the oil-filled cracks. That is in contrast with water-filled cracks, the oil-filled cracks will clap less frequently (rarely). This can explain why oil reservoirs have low-frequency anomalies of the microtremor emission of lower frequency than that of water-saturated cracks.

40 Back-scattered waves After stimulation (excitation) by a vibrator, the so-called “Back-Scattered” seismic waves (also called as “Diffracted” waves) are generated, which are originally caused by populations (ensembles) of open fractures. Special data-processing sequence (method SLBO) is developed, in which this type of wave is separated; these are back-scattered waves, which are related to the micro-tremor emission of hydrocarbons (also known as hydrocarbon microtremor (HM)). A technology SLBO is developed, which provides reliable 3D imaging of the fractures’ spatial distribution in subsurface, as well as direct hydrocarbon indicator; the latter is a new development (namely the method “СЛОНГ-SLONG”(*). Spectral attributes estimated from these micro-tremors are related to the direct hydrocarbon indicators. (*) Fayzullin I.S. , Chirkin I.A. , 1998, Seismic-acoustic method for studying fractured rocks : Geoinformatika, № 3 , p (*) Fayzullin I.S. , A.V. Seregin, A.V. Volkov, 2013, On the connection of the energy of the scattered waves to the physical characteristics of rocks. Seismic side-scanning method (SLBO): Geofizika, № 4. Fayzullin I.S. , A.V. Seregin, A.V. Volkov, 2013, On the connection of the energy of the scattered waves to the physical characteristics of rocks. Seismic side-scanning method (SLBO): Geofizika, № 4.

41 Literature Fayzullin I.S., Chirkin I.A., 1998, Seismic-acoustic method for studying fractured rocks: Geoinformatika, № 3, p Fayzullin I.S., Kutsenko N.V., 2004, The feasibility of using the scattered waves for the study of fractured geomedium. Numerical simulation: Geofizika, № 5, p.5-9. D'yakonov B.P., I.S. Fayzullin, 2009, Response of fractured (consisted of block units) media to seismic-acoustic excitations and/or natural microseisms. Part I. Evolution of cracks under variable manmade and natural loading: Geofizika, № 3, p Fayzullin I.S., B.P. D'yakonov, R.S. Khisamov, R.KH. Muslimov, N.V. Kutsenko, 2006,  On the impact of seismic-acoustic excitation on flooded oil reservoirs: Tekhnologii seysmorazvedki, № 3. Fayzullin I.S., A.V. Seregin, A.V. Volkov, 2013, On the connection of the energy of the scattered waves to physical characteristics of rocks. Seismic side-scanning method (SLBO): Geofizika, № 4. I.S. Fayzullin, A.V. Seregin, A.V. Volkov, 2013, On the connection of the energy of the scattered waves to the physical characteristics of rocks. Seismic side-scanning method (SLBO). Geofizika №

42 Resonance model of seismic waves between
the ground surface and the oil reservoir Birialtsev et al., 2006 Shabalin et al. 2013 Spectrum Frequency Ground surface Resonance of low-frequency (long -wavelength) P waves На каком физическом явлении основан метод НСЗ? В основе метода лежит явление резонанса низкочастотных (длинноволоновых) продольных сейсмических волн между дневной поверхностью и нефтегазовой залежью, являющейся контрастной границей для них. Подробнее в разделеФизические основы явления. Аномально высокий коэффициент отражения волн от нефтенасыщенного пласта можно объяснить исходя из соотношения основных физических свойств воды и нефти, а так же принимая во внимание, что существенно отражается именно низкочастотная составляющая волн. Сжимаемость нефти в 2-5 раз выше, чем сжимаемость пластовой воды и вмещающих пород. У воды сжимаемость отличается всего на 10-20% от сжимаемости вмещающих пород. Довольно сильно на сжимаемость влияет газовый фактор, который значительно ее увеличивает. Вязкость нефти на два порядка больше вязкости воды и вмещающих пород. При низкочастотном воздействии на пласт силы вязкого внутреннего трения внутри залежи ослабевают, вследствие чего залежь становится легко деформируемой инфразвуковой волной. Это сказывается на понижении ее волнового сопротивления и, как следствие, способствует образованию значимого коэффициента отражения (рис. 2). Таким образом, коэффициент отражения от нефтегазовой залежи зависит от частоты сейсмических волн и увеличивается с ее понижением. Выраженность аномалии зависит от толщины нефтяного пласта и его физических характеристик – вязкости, сжимаемости и нефтенасыщенности. Oil reservoir EAGE Amsterdam, 19 0o June 2014

43 Method of low frequency seismic surveys in oil and gas exploration
Birialtsev E. V., Plotnikova I.N., Khabibulin I.R., Shabalin N.Y., 2006, The analysis of microseism spectrum for prospecting of oil reservoir in Republic Tatarstan, EAGE Conference, Saint Petersburg, Russia. Shabalin N.YA., Birialtsev E. V., Ryzhov V.YA., 2013, Passive methods in low-frequency seismic exploration– Myths and Realities . Pribory i sistemy razvedochnoy geofiziki, 2 (44), p [in Russian]. Mетод низкочастотных сейсмических зондирований В настоящее время активно развивается метод низкочастотных сейсмических зондирований (Birialitsev et al., 2006; Шабалин и др., 2013): Birialtsev E. V., Plotnikova I.N., Khabibulin I.R., Shabalin N.Y., 2006, The analysis of microseism spectrum for prospecting of oil reservoir in Republic Tatarstan/ EAGE Conference.-Saint Petersburg, Russia. Shabalin N.YA., Biryal'tsev Ye.V., Ryzhov V.YA., 2013, Passivnaya nizkochastotnaya seysmorazvedka – mify i real'nost'. Pribory i sistemy razvedochnoy geofiziki, 2 (44), p Шабалин Н.Я., Биряльцев Е.В., Рыжов В.Я., 2013, Пассивная низкочастотная сейсморазведка – мифы и реальность. Приборы и системы разведочной геофизики, 2 (44), с

44 Resonance model of seismic waves between the ground surface and the oil reservoir
Birialtsev et al., 2006 Shabalin et al. 2013 OIL Note the difference in the case of the layer with water saturation Water Физические основы метода В основе метода низкочастотной сейсморазведки лежит явление повышенной низкочастотной энергии (1-10Гц) в спектре микросейсм над нефтяными объектами, открытого в 1989 году. За период годы на базе компании ЗАО «Градиент» проведено исследование данного эффекта более чем на 100 площадях в режиме исследовательских и поисково-разведочных работ. Апробация технологии на таком обширном объеме данных в различных геологических условиях подтвердила теоретические представления о природе аномалии связанной с многократным отражением (резонансом) сейсмических волн между дневной поверхностью и нефтегазовой залежью (рис. 1). Аномально высокий коэффициент отражения волн от нефтенасыщенного пласта можно объяснить исходя из соотношения основных физических свойств воды и нефти, а так же принимая во внимание, что существенно отражается именно низкочастотная составляющая волн. Сжимаемость нефти в 2-5 раз выше, чем сжимаемость пластовой воды и вмещающих пород. У воды сжимаемость отличается всего на 10-20% от сжимаемости вмещающих пород. Довольно сильно на сжимаемость влияет газовый фактор, который значительно ее увеличивает. Вязкость нефти на два порядка больше вязкости воды и вмещающих пород. При низкочастотном воздействии на пласт силы вязкого внутреннего трения внутри залежи ослабевают, вследствие чего залежь становится легко деформируемой инфразвуковой волной. Это сказывается на понижении ее волнового сопротивления и, как следствие, способствует образованию значимого коэффициента отражения (рис. 2). Таким образом, коэффициент отражения от нефтегазовой залежи зависит от частоты сейсмических волн и увеличивается с ее понижением. Выраженность аномалии зависит от толщины нефтяного пласта и его физических характеристик – вязкости, сжимаемости и нефтенасыщенности.

45 Kuznetsov O.L., Grafov B.M., Suntsov A.E., and Arutyunov S.L.,
A mechanism of condensation and evaporation of oil- droplets on the surface of the micro-crack cavity and/or gas bubbles in fluid infill of crack is developed by Kuznetsov et al., 2003. Kuznetsov O.L., Grafov B.M., Suntsov A.E., and Arutyunov S.L., 2003, ANCHAR technology: the method background. Spetsialniy vypusk “Tehnologii seysmorsvedki –II”, Geofizika, p EAGE – Amsterdam – 19 of June 2014

46 low frequency oscillations of the contained liquid along z-direction
Schematic representation of a simple bi-conical pore geometry which enables low frequency oscillations of the contained liquid along z-direction Holzner et al., 2009, Communications in Nonlinear Science and Numerical Simulation, 14, Holzner et al., 2009, Communications in Nonlinear Science and Numerical Simulation, 14, 46 46

47 Rheological model for coupling between elastic deformation and fluid oscillations
Frehner et al., 2009 Seismic waves propagation through solids exhibiting a resonance frequency. Modification of spectra Marcel Frehner with co-authors propose Rheological model for coupling between elastic deformation and fluid oscillations . 47 EAGE Amsterdam, 19 0o June 2014

48 Capacitor 48 What is the physical reason of Hydrocarbon Micro-Tremors?
oil -- May be electric resonant circuit formed by oil reservoir (the capacitor)? Glikman hypothesis in the paper of Kulikov S.A., Gatiyatullin N.S., and Kulikova E.R What is the physical reason of Hydrocarbon Micro-Tremors? Capacitor 48 EAGE Amsterdam, 19 0o June 2014

49 The first publications on the phenomenon of Hydrocarbon Micro- Tremors
Sadovskiy M.A., Nikolaev A.V., 1982, New methods in seismic exploration. Prospects for the research development. Vestnik of the USSR Academy of Sciences N1, p [in Russian]. Nersesov I.L., Kaazik P.B., Rahmatullin M.H., Tregub F.S., 1990, On the opportunities for gas exploration from the amplitude spectral ratios of microseismic tremor. Doklady of the USSR Academy of Sciences, V.312, N4, p Основой послужили работы Садовского и Николаева (1982), и Нерсесова с соавторами (1990): Садовский М. А., Николаев А. В., 1982, Новые методы сейсмической разведки. Перспективы развития.// Вестник АН СССР. 1, Sadovskiy M.A., Nikolaev A.V., 1982, New methods in seismic exploration. Prospects for the research development. Vestnik of the USSR Academy of Sciences N1, p [in Russian]. Нерсесов И.Л., Каазик П.Б., Рахматуллин М.Х., Трегуб Ф.С., 1990, О возможности поиска газовых месторождений по спектральным отношениям амплитуд микросейсмического шума// ДАН СССР, т. 312, 4, Nersesov I.L., Kaazik P.B., Rahmatullin M.H., Tregub F.S., 1990, On the opportunities for gas exploration from the amplitude spectral ratios of microseismic tremor. Doklady of the USSR Academy of Sciences, V.312, N4, p [in Russian].

50 The method of Vedernikov
Vedernikov G.V., Zharkov A.V., Maksimov L.A., 2001, Results on the analysis of the Earth hydrocarbon tremors: Geofizika. Special issue on 30 years of “Sibneftegeofizika”, p [in Russian]. Vedernikov, G.V., Hogoev E.A., 2007, Exploración de yacimientos de hidrocarburos con las características micro-sísmicas desde datos sísmicos (con procesado de CDPs). Materiales del congreso científico internacional "Geo-Siberia 2007", Novosibirsk, Rusia, de Abril, 2007, p [en Ruso]. Vedernikov, G.V., Hogoev E.A., 2006, El refinamiento de los modelos de bloques de yacimientos de hidrocarburos usando las características de la emisión acústica de micro-sismos. Colección de materiales del Décimo Congreso Geofísico de EAGE en Tyumen, Rusia, de Noviembre, 2006, p [en Ruso] Vedernikov G.V. and Maksimov L.A., 2013, Tekhnologiya i opyt prognozirovaniya zalezhey UV po kharakteristikam mikroseysm. Pribory i Sistemy Razvedochnoy Geofiziki, 2 (44), p [en Ruso] Vedernikov G.V., Hogoyev E.A., 2006, Utochneniye blokovykh modeley zalezhey uglevodorodov po kharakteristikam mikroseysm/ Sbornik materialov 10-y geofizicheskoy nauchno-prakticheskoy konferentsii Tyumen-EAGO, Tyumen', november 2006, p [en Ruso] Vedernikov G.V., Hogoyev Ye.A., 2007, Prognoz zalezhey UV po kharakteristikam mikroseysm pri seysmorazvedochnykh rabotakh MOGT/ Sbornik materialov mezhdunarodnogo nauchnogo kongressa “Geo-Sibir'-2007”, Novosibirsk, april 2007, p [en Ruso] Vedernikov G.V. , Zharkov A.V. , Maksimov L.A. , Opyty po registratsii geodinamicheskikh shumov ot neftegazovykh zalezhey / / Geofizika , Spets.vypusk " 30 let OAO " Sibneftegeofizika “, p [in Russian].

51 Micro-tremores después de excitación con un vibrador sísmico:
Literatura Acerca de Las señales de la emisión acústica (micro-tremores de hidrocarburos), después de la excitación con vibración, para núcleos saturados de petróleo (aceite) y saturados de agua : Kuznetsov O.L. , Dyblenko V.P. , Chirkin I.A. et al , 2007, Peculiar properties of the energy storage in geomechanical stress and the anomalous seismic-acoustic emission in the oil and gas-bearing rocks : Geofizika , 6, 8-15 Serdyukov S.V., Kurlenya M.V., 2007, Seismic stimulation of oil reservoirs // Russian Geology and Geophysics. v. 48, №11, p [in Russian]. Micro-tremores después de excitación con un vibrador sísmico: Kuznetsov O.L. , Dyblenko V.P. , Chirkin I.A. et al , 2007, Osobennosti akkumulirovaniya energii mekhanicheskikh napryazheniy i anomal'noye seysmo - akusticheskoye izlucheniye v nefte-gazonasyshchennykh porodakh : Geofizika, 6, [in Russian].

52 The method ANCHAR (АНЧАР)
Arutyunov S.L., Grafov B.M. and Sirotinsky Y.V. 1998, ANChAR - an unique technology of direct hydrocarbon field exploration. Geoinformatics 98, p.12–15. Grafov B.M., Arutyunov S.L., Kazarinov V.Ye., Kuznetsov O.L., Sirotinskiy YU.V., Suntsov A.Ye., 1998, Analiz geoakusticheskogo izlucheniya neftegazovoy zalezhi pri ispol'zovanii tekhnologii ANCHAR, Geofizika, 5, [in Russian]. Kuznetsov O.L., Arutyunov S.L., Vostrov L.L., 2000, Rossiyskaya infrazvukovaya tekhnologiya ANCHAR: unikal'naya praktika razvedki i osvoyeniya neftyanykh i gazovykh resursov. Tezisy dokladov Mezhdunarodnoy  geofizicheskoy konferentsii, Sankt-Peterburg, p [in Russian]. Технология разведки, основанная на анализе инфразвуковой сейсмической эмиссии залежей углеводородов, под названиам АНЧАР, разработана и используется достаточно широко ,например: Arutyunov S.L., Grafov B.M. and Sirotinsky Y.V. 1998, ANChAR - an unique technology of direct hydrocarbon field exploration. Geoinformatics 98, p.12–15. Grafov B.M., Arutyunov S.L., Kazarinov V.Ye., Kuznetsov O.L., Sirotinskiy YU.V., Suntsov A.Ye., 1998, Analiz geoakusticheskogo izlucheniya neftegazovoy zalezhi pri ispol'zovanii tekhnologii ANCHAR, Geofizika, 5, Графов Б.М., Арутюнов С.Л., Казаринов В.Е., Кузнецов О.Л., Сиротинский Ю.В., Сунцов А.Е., 1998, Анализ геоакустического излучения нефтегазовой залежи при использовании технологии АНЧАР, Геофизика, 5, Kuznetsov O.L., Arutyunov S.L., Vostrov L.L., 2000, Rossiyskaya infrazvukovaya tekhnologiya ANCHAR: unikal'naya praktika razvedki i osvoyeniya neftyanykh i gazovykh resursov. Tezisy dokladov Mezhdunarodnoy geofizicheskoy konferentsii, Sankt-Peterburg, p Кузнецов О.Л., Арутюнов С.Л., Востров Л.Л., 2000, Российская инфразвуковая технология АНЧАР: уникальная практика разведки и освоения нефтяных и газовых ресурсов. Тезисы докладов Международной геофизической конференции, Санкт-Петербург, с

53 Low frequency methods of seismic exploration
Arutyunov S.L. , 1993, Pryamoy metod akusticheskoy nizkochastotnoy razvedki na neft' i gaz ( rezul'taty i perspektivy ) . Sbornik Mezhdunarodnoy nauchnoy konferentsii " Geofizika i sovremennyy mir“, M [in Russian]. Arutyunov S.L. , Loshkarev G.L. , Grafov B.M. , et al, 1995, Sposob vibroseysmorazvedki pri poiske neftegazovykh mestorozhdeniy : Patent RF № [in Russian]. Arutyunov S.L. , Davydov V.F. , Kuznetsov O.L. et al , 1999, Yavleniye generatsii infrazvukovykh voln neftegazovoy zalezh'yu : Nauchnoye otkrytiye № 109. [in Russian]. Метод обнаружения нефтегазовых залежей по преобладанию низких частот в спектре микросейсм был предложен российскими учеными в 1990-е годы [Арутюнов и соавторы, 1993, 1995, 1999; Arutyunov et al ]: (Арутюнов С.Л., 1993, Прямой метод акустической низкочастотной разведки на нефть и газ (результаты и перспективы). Сборник Международной научной конференции «Геофизика и современный мир».-М ) (Арутюнов С.Л., Лошкарев Г.Л., Графов Б.М., и др., 1995, Способ вибросейсморазведки при поиске нефтегазовых месторождений: Патент РФ № ) (Арутюнов С.Л., Давыдов В.Ф., Кузнецов О.Л. и др.,1999. Явление генерации инфразвуковых волн нефтегазовой залежью: Научное открытие № 109. )

54 Kouznetsov O. L. , Mirzajanzade A. Kh. , Shakhverdiev A. Kh, et al
Kouznetsov O. L., Mirzajanzade A. Kh., Shakhverdiev A. Kh, et al., 1999, Seismic and geochemical technologies for improving productive oil capacity of pay zones and monitoring of these technologies: Abstracts of 10th IOR EAGE Conference: Brighton, UK. Suntsov A. E., Aroutunov S. L., Karnaukhov S. M. et al., 2006, Efficiency of Microseismic Infrasonic Prediction of Oil and Gas: EAGE-SEG-EAGO. International Conference &Exhibition, October, 2006: SaintPetersburg, Russia (P244). Suntsov A. E., Aroutunov S. L., Mekhnin A. M., et al., 2006, Passive InfraFrequency Microseismic Technology Experience and Problems of Practical Use: EAGE Workshop Passive Seismic: Exploration & Monitoring Applications, December , 2006, Dubai.

55 The method SLEC (Seismic Location of Emission Centers )
or in Russian СЛОЕ (SLOE). Un grupo especial de los métodos asociados con la emisión de microsismos de hidrocarburos incluye un método de Localizador Sísmico de los Epicentros de la Emisión Micro-Sísmica (El metodo SLEC ) Kouznetsov O.L., I.A. Chirkin, A.V. Volkov , B.Y. Meltchouk, A.S. Vorobiev, A.S. Joukov, G.V. Rogotsky & K.Z. Sydykov, 2006a, Applying Seismic Location of Emission Centers (Slec) to Monitoring the Production in Oil-and-Gas Fields. Passive Seismic: Exploration and Monitoring Applications Dubai, United Arab Emirates, December A36. Kouznetsov O.L., I.A. Chirkin, Y.A. Kuryanov, A.S. Zhoukov, A.V. Volkov, Meltchouk B.Y, I.I. Bogatsky, G.A. Belova, 2006b, Seismic monitoring the variations of open fracturing of reservoir rocks due to Linisolar Tides. EAGE 68th Conference & Exhibition — Vienna, Austria, June 2006, D035. К особой группе методов, связанных с выделением микросейсм, можно отнести метод Сейсмической Локации Очагов Эмиссии (СЛОЕ): Un grupo especial de los métodos asociados con la liberación de MS puede incluir un método de emisión de los focos sísmicos Locations (CAPA)

56 The method SVSL (Side View Seismic Locator)
or in Russian СЛБО (SLBO). Kouznetsov O.L., I.S. Faizullin, I.A. Chirkin, B.YU. Meltchouk, S.I. Slionkin and G.V. Kashirin, 2001, STUDY OF 3-D DISTRIBUTION OF GEOMEDIUM FRACTURING BY SIDE-VIEW SEISMIC LOCATION METHOD (SVSL), EAGE 63rd Conference & Technical Exhibition — Amsterdam, The Netherlands, June 2001, Paper O- 11. Kouznetsov O.L., I.A. Chirkin, I.S. Faizullin, B.YU. Meltchouk, I.S. Dzhafarov, YU.A. Kuryanov, V.N. Nesterov, S.I. Slionkin, G.V. Kashirin, Z.KH. Mollaev and A.P. Kozub, 2002, IMPROVING THE EFFICIENCY OF SEISMIC EXPLORATION BY APPLYING 3D MAPPING OF OPEN FRACTURING BY THE SVSL METHOD, EAGE 64th Conference & Exhibition — Florence, Italy, May 2002, Paper G-38. Kouznetsov O.L., I.A. Chirkin, I.S. Faizullin, A.S. Zhukov, N.V. Kutsenko, Y.A. Kuryanov, B.Y. Meltchouk, R.H. Muslimov, 2004a, REGULARITIES OF TIME-SPATIAL VARIATION OF FRACTURING IN PETROLEUM BASINS FROM SVSL DATA, EAGE 66th Conference & Exhibition — Paris, France, June 2004, C037. Kouznetsov O.L., I.A. Chirkin, I.S. Faizullin, B.Y. Meltchouk, R.P. Mukhametzyanov, S.I. Slionkin, G.V. Kashirin, E.P. Sokolov, R.S. Khisamov, V.S. Parasyna, S.M. Karnaukhov, S.I. Ivanov, YU.A. Kuryanov, 2004b, OPTIMIZATION OF PRODUCTION IN FRACTURED RESERVOIRS USING THE SVSL DATA ON OPEN FRACTURING, EAGE 66th Conference & Exhibition — Paris, France, June C045. Kouznetsov O.L., I.A. Chirkin, B.Y. Meltchouk, S.I. Slionkin, Y.A. Kuryanov, G.V. Kashirin, A.S. Zhukov, A.V. Volkov, 2005, SIDE-VIEW SEISMIC LOCATION METHOD TO STUDY FRACTURING OF RESERVOIRS USING SCATTERED WAVES, EAGE 67th Conference & Exhibition — Madrid, Spain, June G046. Kouznetsov O.L., I.A. Chirkine, A.V. Volkov , B.Y. Meltchouk, A.S. Vorobiev, A.S. Joukov, G.V. Rogotsky & K.Z. Sydykov, 2006a, Applying Seismic Location of Emission Centers (Slec) to Monitor the Production in Oil- and-Gas Fields. Passive Seismic: Exploration and Monitoring Applications Dubai, United Arab Emirates, December A36. Kouznetsov O.L., I.A. Chirkin, Y.A. Kuryanov, A.S. Joukov, A.V. Volkov , Meltchouk B.Y, I.I. Bogatsky, G.A. Belova, 2006b, Seismic monitoring the variations of open fracturing of reservoir rocks due to Linisolar Tides. EAGE 68th Conference & Exhibition — Vienna, Austria, June 2006, D035.

57 A passive low-frequency seismic experiment in the Albertine Graben, Uganda Authors: F. Martini, I. Lokmer, K. Jonsdottir, L. De Barros, M. Möllhoff, C.J. Bean,  F. Hauser, J. Doherty, C. Ryan and J. Mongan Journal name: Geophysical Prospecting Issue: Vol 61, No sup1, June 2013, pp. 39 – 61 Low-frequency passive seismic experiments in Abu Dhabi, United Arab Emirates: implications for hydrocarbon detection Authors: M.Y. Ali, K.A. Berteussen, J. Small and B. Barkat Issue: Vol 58, No 5, September 2010, pp. 875 – 899 Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria Authors: Marc-André Lambert, Stefan M. Schmalholz, Erik H. Saenger and  Brian Steiner Issue: Vol 57, No 3, May 2009, pp. 393 – 411 EAGE – Amsterdam – 19 of June 2014

58 Recent developments in low frequency spectral analysis of passive seismic data Author: D. Walker
 First Break Issue: Vol 26, No 2, February 2008 Applying microtremor analysis to identify hydrocarbon reservoirs Authors: R. Holzner, P. Eschle, H. Zürcher, M. Lambert, R. Graf,  S. Dangel and P.F. Meier Issue: Vol 23, No 5, May 2005 EAGE – Amsterdam – 19 of June 2014

59 Thank you tichqvoa@yahoo.com http://chichinina.rusiamexico.com 59
Thank you EAGE – Amsterdam – 19 of June 2014 59


Download ppt "® Micro-tremor Analysis in Seismic Reflection Data"

Similar presentations


Ads by Google