Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Halogens Chapter 20.  F,Cl,Br,I,At  All elements through the periodic table of elements do form halides  Exception: He,Ne,Ar  They are easiest.

Similar presentations


Presentation on theme: "The Halogens Chapter 20.  F,Cl,Br,I,At  All elements through the periodic table of elements do form halides  Exception: He,Ne,Ar  They are easiest."— Presentation transcript:

1 The Halogens Chapter 20

2  F,Cl,Br,I,At  All elements through the periodic table of elements do form halides  Exception: He,Ne,Ar  They are easiest to prepare  Use: precursors in synthesis reactions  Halides with elements with more than one valence are best known  In organic compounds the F have special properties

3  At is a greek name and means unstable.  At has no stable isotope.  At behaves like I, but is less electronegative.

4  F: occurs widely as Fluorspar (CaF 2 )  Na3AlF6 Cryolite,  Ca 3 (PO 4 ) 2 Ca(F,Cl) 2 Fluorapatite.  It is more abundant than Chlorinne  F is obtained by electrolysis of molten fluorides.  Most common used electrolyte KF.2-3HF  Under electrolysis the melting point increases but the electrolyte is regenerated by HF

5  Fluorine cells are made out of Steel, Cu, Ni-Cu alloys.  They become coated with a layer of fluoride.  Cathodes are steel or Cu.  Anodes ungraphitized carbon.  F 2 is handled in metal apparatus  But it can be handled in glas, but HF needs to be removed by passing through anhydrous NaF,KF forming MHF 2

6  Fluorine is the most chemically reactive of all the elements  combines directly (often with extreme vigor), at ordinary or elevated temperatures, with all the elements other than 0 2, He, Ne, and Kr.  Attacks many compounds transforming them to fluorides.  Organic material burn in F 2.

7  The great reactivity ofF2 is in part attributable to the low dissociation energy of the F-F bond, and because reactions of atomic fluorine are strongly exothermic.  The low F-F bond energy is probably due to repulsion between nonbonding electrons

8  Chlorine  occurs as NaCl, KCI, MgCl 2 sea water, salt lakes deposits originating from the prehistoric evaporation of salt lakes.  Cl 2 is obtained by electrolysis of brine.  Old technology:  Mercury cathode  New technology:  Membrane cells

9  Chlorine is a greenish gas  It is moderately soluble in water  Bromine occurs in much smaller amounts, as bromides, along with chlorides

10  Bromine is a dense, mobile, dark red liquid at room temperature  It is moderately soluble in water and miscible with nonpolar solvents such as CS 2 and CCI 4  Iodine occurs as iodide in brines and as iodate in Chile saltpeter NaNO 3  Various forms of marine life concentrate iodine

11  Production of 1 2 involves either oxidizing 1-or reducing iodates to 1-followed by oxidation  An acid solution of Mn0 2 is commonly used as the oxidant.  Iodine is a black solid with a slight metallic luster  I 2 sublimes at 1atm without melting

12  Soluble in nonpolar solvents such as CS 2 and CCI4  Colour: Purple  In polar solvents, unsaturated hydro carbons, and liquid S0 2' brown or pinkish- brown solutions are formed.  colors indicate the formation of weak complexes I 2 ---S known as charge- transfer complexes.

13  The bonding energy results from partial transfer of charge in the sense I 2 - S +  I 2,Br 2,Cl 2 and Icl can sometimes be isolated as crystalline solids at low temperatures  Iodine forms a blue complex with starch, in which the iodine forms linear I 5 - ions in channels in the polysaccharide amylose

14  At has been found as a product of the U and Th decay series.  About 20 isotopes of At are known  The longest lived has a half-life of 8.3 h  At seems to follow the trend of the other halogens.  It is volatile, somewhat soluble in water

15  There are many types of halides.  Binary Haliddes  Form simple molecules, complex infinite arrays.  Metal halides in +1,+2,+3 oxidation state are ionic.  Many metals show their highest oxidation state in fluorides

16  Preparation of Anhydrous Halides  1. Direct interaction with the elements Direct fluorination normally gives fluorides in the higher oxidation states Most metals and nonmetals react very vigorously with F2 nonmetals such as P 4 the reaction may be explosive Metal and halide react faster in THF. The Halide is a solvate.

17  2. Dehydration of hydrated halides The dissolution of metals, oxides, or carbonates in aqueous halogen acids followed by evaporation or crystallization gives hydrated halides. Dehydration of chlorides can be effected by thionyl chloride

18  3. Treatment of oxides with other halogen compounds Oxides may often be treated with halogen- containing compounds to replace oxygen with halogen

19  4. Halogen exchange  Many halides react to exchange halogen with  (a) elemental halogens  (b) acid halides  (c) halide salts  (d) an excess of another halogen con- taining substance  Chlorides can often be converted to either bromides (by KBr) or especially to iodides (by KI)

20  Halogen exchange is especially important for the synthesis of fluorides from chlorides, using various metal fluorides such as CoF 3 or AsF 5.

21  Molecular Halides  Molecular Halides are also called covalent halides.  Between 2 metal atoms, most common 2 halogen atoms.

22  A fairly general property of molecular halides is their easy hydrolysis, for example

23  Reaction of Halogens with H 2 O and OH -  The halogens are all soluble in water to some extent.  In such solutions there are species other than solvated halogen molecules  disproportionation reaction occurs rapidly.

24

25  Occurrence:  Minor constituents of the atmosphere  He : radioactive minerals, natural gas  Origin fromt he decay of U, Th that emit alpha particles.  The alpha particles are He nuclei athat acquire electrons from surounding medium.  He stays trapped in the rocks.  Rn is radioactive, comes formt he decay series of U, Th

26  Properties of the Noble Gases:

27  Ne,Ar,Kr,Xe prepared by fractionation of liquid air.  Known as inert gases  Thought not to have any reactivity  Key to the problem of valency, the interpretation od the periodic table, and the concept of the closed electron shell configuration.  Point of reference

28  He:  Main use cryoscopy.  Ar:  Used to provide an inert atmosphere  Ne:  Used in discharge lamps  Rn:  Health hazard in houses, Cancerogenicc

29

30  Chemistry of Xe  Fluorides:  Thermodynamic studies show that only these 3 fluorides exist

31  Chemistry of Xe:  Xenon difluoride (XeF 2 )  preparation by interaction of Xe with a deficiency of F 2 at high pressures  Soluble in water  Hydrolysis is slow in acid solution, but rapid in the presence of bases

32  Xenon tetrafluoride (XeF4 ) is the easiest of the three fluorides to prepare. On heating a 1:5 mixture of Xe and F 2 at 400°C and about 6-atm pressure for a few hours, XeF4 is formed quantitatively.  Fluorination agent in organic chemistry

33  Xenon hexafluoride (XeF6 ) is obtained by the interaction ofXeF4 and F2 under pressure or directly from Xe and F 2 at temperatures above 250°C and pressures greater than 50 atm. Xenon hexafluoride is extremely reactive, attacking even quartz

34  Xenon hexafluoride is a strong acid according to the Lux-Flood definition  It accepts oxide ion from other compounds and inserts fluoride ion in its place.

35  The xenon fluorides will react with strong Lewis acids such as SbFs or 1rFs  3 types of adducts formed by XeF2 are: XeF 2.MF 5,  2XeF 2.MF 5  XeF 2.2MF 5  where M = Ru, Ir, Pt, and so on.  molecular rather than ionic structure, in most cases adduct formation involves fluoride ion transfer to give structures that contain ions, such as XeF +

36  Crystal structure of XeF

37  Xenon hexafluoride can act as a Lewis acid toward F-and can be converted to heptafluoro or octafluoro xenates  Most stable compounds, decompose above 400 degC.

38  Xenon-Oxygen Compounds  On evaporation of water, XeO 3 is obtained as a white deliquescent solid that is dangerously explosive.


Download ppt "The Halogens Chapter 20.  F,Cl,Br,I,At  All elements through the periodic table of elements do form halides  Exception: He,Ne,Ar  They are easiest."

Similar presentations


Ads by Google