Download presentation

Presentation is loading. Please wait.

Published byMicaela Stelling Modified about 1 year ago

1

2
(1,0) (0,1) (-1,0) (0, -1) α (x,y) x y 1 sin(α) = y cos(α) = x (cos(α), sin(α)) (0,0) tan(α) = y/x 2.1 Unit Circle

3
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

4
10° 20° 30° 40° 350° 340° 330° 320° 50° 60° 70° 80°100° 110° 120° 130° 140° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 260°280° 290° 300° 310° Quadrant IQuadrant II Quadrant IIIQuadrant IV Sine + Cosine + Tangent + Sine + Cosine - Tangent - Sine - Cosine - Tangent + Sine - Cosine + Tangent -

5

6
2.2 Arc Length and Sectors d (1/7)d C = πd

7
2.2 Arc Length and Sectors r r 2 r 2 r 2 (1/7) r 2 A = πr 2

8
α 2.2 Arc Length and Sectors s α s 360 πd =

9
50° 2.2 Arc Length and Sectors s α s 360 πd = 20 in.

10
50° 2.2 Arc Length and Sectors s 50 s π = 20 in. 200π 360 = = 1.74 in.

11
α 2.2 Arc Length and Sectors k α k 360 πr = 2

12
45° 2.2 Arc Length and Sectors k α k 360 πr = 2 6 ft. 45 k π = K = in. 2

13
2.3 Radian Measure 0 rad. π rad. 2π rad. 1 rad. 2 rad. 3 rad. 4 rad. 5 rad. 6 rad. π 2 rad. 3π3π 2

14
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° 10° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350° π 180° 0, 2π π 2 3π3π 2 π 6 5π5π 6

15
2.4 Inverse Trig Functions and Negative Angles sin (.6) = _____________ ─ ˚

16
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

17
2.4 Inverse Trig Functions and Negative Angles sin (.6) = ____________________ ─ ˚ or ˚ 36.87˚ + 360n ˚ + 360n

18
2.4 Inverse Trig Functions and Negative Angles cos (.4) = ____________________ ─ ˚

19
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

20
2.4 Inverse Trig Functions and Negative Angles cos (.4) = ____________________ ─ ˚ or ˚ 66.42˚ + 360n ˚ + 360n

21
2.4 Inverse Trig Functions and Negative Angles tan (2.5) = _____________ ─ ˚

22
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

23
2.4 Inverse Trig Functions and Negative Angles tan (2.5) = ____________________ ─ ˚ or 248.2˚ 68.2˚ + 180n

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google