Download presentation
Presentation is loading. Please wait.
Published byMicaela Stelling Modified over 3 years ago
2
(1,0) (0,1) (-1,0) (0, -1) α (x,y) x y 1 sin(α) = y cos(α) = x (cos(α), sin(α)) (0,0) tan(α) = y/x 2.1 Unit Circle
3
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310°.2.4.6.81-.8-.6-.4-.2.2.4.6.8 1 -.2 -.4 -.6 -.8 10° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°
4
10° 20° 30° 40° 350° 340° 330° 320° 50° 60° 70° 80°100° 110° 120° 130° 140° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 260°280° 290° 300° 310°.2.4.6.81-.8-.6-.4-.2.2.4.6.8 1 -.2 -.4 -.6 -.8 Quadrant IQuadrant II Quadrant IIIQuadrant IV Sine + Cosine + Tangent + Sine + Cosine - Tangent - Sine - Cosine - Tangent + Sine - Cosine + Tangent -
6
2.2 Arc Length and Sectors d (1/7)d C = πd
7
2.2 Arc Length and Sectors r r 2 r 2 r 2 (1/7) r 2 A = πr 2
8
α 2.2 Arc Length and Sectors s α s 360 πd =
9
50° 2.2 Arc Length and Sectors s α s 360 πd = 20 in.
10
50° 2.2 Arc Length and Sectors s 50 s 360 40π = 20 in. 200π 360 = = 1.74 in.
11
α 2.2 Arc Length and Sectors k α k 360 πr = 2
12
45° 2.2 Arc Length and Sectors k α k 360 πr = 2 6 ft. 45 k 360 36π = K = 14.14 in. 2
13
2.3 Radian Measure 0 rad. π rad. 2π rad. 1 rad. 2 rad. 3 rad. 4 rad. 5 rad. 6 rad. π 2 rad. 3π3π 2
14
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° 10° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350° π 180° 0, 2π π 2 3π3π 2 π 6 5π5π 6
15
2.4 Inverse Trig Functions and Negative Angles sin (.6) = _____________ ─ 1 36.87˚
16
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310°.2.4.6.81-.8-.6-.4-.2.2.4.6.8 1 -.2 -.4 -.6 -.8 10° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°
17
2.4 Inverse Trig Functions and Negative Angles sin (.6) = ____________________ ─ 1 36.87˚ or 143.13˚ 36.87˚ + 360n 143.13˚ + 360n
18
2.4 Inverse Trig Functions and Negative Angles cos (.4) = ____________________ ─ 1 66.42˚
19
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310°.2.4.6.81-.8-.6-.4-.2.2.4.6.8 1 -.2 -.4 -.6 -.8 10° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°
20
2.4 Inverse Trig Functions and Negative Angles cos (.4) = ____________________ ─ 1 66.42˚ or 293.58˚ 66.42˚ + 360n 293.58˚ + 360n
21
2.4 Inverse Trig Functions and Negative Angles tan (2.5) = _____________ ─ 1 68.2˚
22
60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310°.2.4.6.81-.8-.6-.4-.2.2.4.6.8 1 -.2 -.4 -.6 -.8 10° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°
23
2.4 Inverse Trig Functions and Negative Angles tan (2.5) = ____________________ ─ 1 68. 2˚ or 248.2˚ 68.2˚ + 180n
Similar presentations
© 2018 SlidePlayer.com Inc.
All rights reserved.
Ppt on job satisfaction and attitude Ppt on communication in hindi Ppt on internet banking project Ppt on indian history and culture Ppt on history of capital market in indian Ppt on indian intelligence agencies Ppt on places in our neighbourhood living Ppt on isobars and isotopes of carbon Word to ppt online converter free 100% Ppt on carbon and its compounds model