Download presentation

Presentation is loading. Please wait.

1
**Translations of Sine and Cosine Functions**

Trigonometry, 4.0: Students graph functions of the form f(t)=Asin(Bt+C) or f(t)=Acos(Bt+C) and interpret A, B, and C in terms of amplitude, frequency, period, and phase shift.

2
Quick Check State the amplitude and period for each function. Then graph each function. y=-3 cos(2θ) y=2/3 cos(θ/4) y=sin(4θ) Write an equation of the sine function with amplitude and period π/2. Write an equation of the sine function with amplitude 3/5 and period 4. Answers: 3, π 2/3, 8π 1, π/2 y=±0.27 sin(4θ) y=±3/5 cos(π/2 θ)

3
Objectives Find the phase shift translations for sine and cosine functions. Find the vertical translations for sine and cosine functions. Write the equations of sine an cosine functions given the amplitude, period, phase shift, and vertical translation Graph compound functions.

4
**Objective 1: Phase shift**

Phase shift of Sine and Cosine Functions: y=A sin[B(θ-h)]+k and y=A cos[B(θ-h)]+k The horizontal shift is h If h>0, the shift is to the right If h<0, the shift is to the left

5
**Objective 1: Phase Shift Example**

State the phase shift for each function. Then graph the function. a. y = sin (2 + ) b. y = cos ( - )

6
**A. y = sin (2 + ) The phase shift of the function is − 𝑐 𝑘 or − 𝜋 2**

A. y = sin (2 + ) The phase shift of the function is − 𝑐 𝑘 or − 𝜋 To graph y = sin (2 + ), consider the graph of y = sin 2. Graph this function and then shift the graph − 𝜋 2 .

7
B. y = cos ( - ) The phase shift of the function is − 𝑐 𝑘 or − 𝜋 1 , which equals . To graph y = cos ( - ), consider the graph of y = cos and then shift the graph .

8
**Objective 2: Vertical shift**

Vertical shift of Sine and Cosine Functions: y=A sin[B(θ-h)]+k and y=A cos[B(θ-h)]+k The midline is y=k If k>0, the shift is upward If k<0, the shift is downward

9
**Objective 2: Vertical shift Example**

State the vertical shift and the equation of the midline for the function y = 3 cos + 4. Then graph the function.

10
**The vertical shift is 4 units upward. The midline is the graph y = 4.**

To graph the function, draw the midline, the graph of y = 4. Since the amplitude of the function is 3, draw dashed lines parallel to the midline which are 3 units above and below the midline. Then draw the cosine curve.

11
**Additional Information for Graphing**

Graphing Sine and Cosine Functions: Determine the vertical shift and graph the midline. Determine the amplitude. Use dashed lines to indicate the maximum and minimum values of the function. Determine the period of the function and graph the appropriate sine or cosine curve. Determine the phase shift and translate the graph accordingly.

12
**Additional Example (Synthesis)**

State the amplitude, period, phase shift, and vertical shift for y = 2 cos ( /2 + ) + 3. The amplitude is 2 or 2. The period is 2𝜋 or 4. The phase shift is − 𝜋 or -2. The vertical shift is +3

13
**Objective 3: Write Equation Example**

Write an equation of a sine function with amplitude 5, period 3, phase shift /2, and vertical shift 2. The form of the equation will be y = A sin (k + c) + h. Find the values of A, k, c, and h. A: |A| = 5 A = 5 or -5 k: 2/k = 3 The period is 3. k = 2/3 c: -c/k = /2 The phase shift is /2. -c/ 2/3 = /2 k = 2/3 c = - /3 h: h = 2 Substitute these values into the general equation. The possible equations: y = 5 sin (2/3 - /3) + 2 or y = - 5 sin (2/3 - /3) + 2

14
**Objective 4: Graph Compound Functions**

Compound functions may consist of sums or products of trigonometric functions or other functions. For example: 𝑦= sin 𝑥 ∙ cos 𝑥 Product of trigonometric functions 𝑦= cos 𝑥 +𝑥 Sum of a trigonometric function and a linear function.

15
**Objective 4: Graphing Example**

Graph y = x + sin x. First graph y = x and y = sin x on the same axes. Then add the corresponding ordinates of the functions. Finally, sketch the graph. x sin x x + sin x /2 1 + 1 2.57 3.14 3/2 -1 - 1 3.71 2 2 6.28 5/2 + 1 8.85 3 3 9.42

16
**Conclusion Summary Assignment**

A Japanese company invented the first integrated radio circuit in Suppose that researchers were observing a sine curve that had an amplitude of 3 centimeters, a period of 9 centimeters, an upper shift of 2 centimeters, and a phase shift ½ centimeter to the right. State the function that models the data. y=3 sin(2π/9 θ - π/9) + 2, this is one of many equivalent answers possible. 6.5 Translations of Sine and Cosine Functions pg383#(14-20 ALL, ODD, 42,45 EC) Problems not finished will be left as homework.

Similar presentations

OK

Trigonometry, 4.0: Students graph functions of the form f(t)=Asin(Bt+C) or f(t)=Acos(Bt+C) and interpret A, B, and C in terms of amplitude, frequency,

Trigonometry, 4.0: Students graph functions of the form f(t)=Asin(Bt+C) or f(t)=Acos(Bt+C) and interpret A, B, and C in terms of amplitude, frequency,

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on travel agency management Ppt on road accidents today Ppt on microsoft excel tutorial Ppt on machine translation programs Ppt on the art of war sun Ppt on natural and artificial satellites drawings Ppt on front office management in hospital Ppt on power sharing in democracy who has the power Ppt on word association test images Ppt on central nervous system