The Sine Law How to use sine law to find the angles and lengths of triangles.

Presentation on theme: "The Sine Law How to use sine law to find the angles and lengths of triangles."— Presentation transcript:

The Sine Law How to use sine law to find the angles and lengths of triangles.

ab A c B C = Sin ASin B ab The basics of Sine Law

5.9m (a) 7.8m (b) c B C A = Sin ASin B ab = Sin 36˚Sin B 5.97.8 36 ˚ =SinB x 5.9(Sin36˚)(7.8) =SinB(Sin36˚)(7.8) 5.9 = { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/14/4212770/slides/slide_3.jpg", "name": "5.9m (a) 7.8m (b) c B C A = Sin ASin B ab = Sin 36˚Sin B 5.97.8 36 ˚ =SinB x 5.9(Sin36˚)(7.8) =SinB(Sin36˚)(7.8) 5.9 =

= { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/14/4212770/slides/slide_4.jpg", "name": "=

EX 2 θ θ E C B A 15.6m 36.0m = Sin BSin C bc = Sin θSin140˚ 15.636.0 Θ= sinˉ¹ (15.6)(sin140˚) 36.0 N Θ=16˚ { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/14/4212770/slides/slide_5.jpg", "name": "EX 2 θ θ E C B A 15.6m 36.0m = Sin BSin C bc = Sin θSin140˚ 15.636.0 Θ= sinˉ¹ (15.6)(sin140˚) 36.0 N Θ=16˚

Try this one out 115˚ 16m 49m A C B C

= Sin ASin115˚ 1649 A= Sinˉ¹ (sin115˚)(16) 49 A= 31˚ C=180-(31+115) C= 180 - 146 C=34˚ = Sin ASin C ac = Sin31˚Sin34˚ 16c = Sin31˚ 16 cSin34˚ x -20.95 = c

Download ppt "The Sine Law How to use sine law to find the angles and lengths of triangles."

Similar presentations