Download presentation

Presentation is loading. Please wait.

Published byLayton Vosper Modified about 1 year ago

1
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo, May 29, 2010

2
HARVARD Max Metlitski, Harvard arXiv: Cenke Xu, Harvard arXiv: Eun Gook Moon, Harvard arXiv:

3
1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

4
1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

5
Ground state has long-range Néel order Square lattice antiferromagnet

6
Add perturbations so ground state no longer has long-range Néel order Square lattice antiferromagnet

7
Add perturbations so ground state no longer has long-range Néel order Square lattice antiferromagnet

8
Underlying electrons cannot be ignored even though charged excitations are fully gapped. Order parameter description is incomplete They endow topological defects in the order parameter (hedgehogs, vortices...) with Berry phases: the defects acquire additional degeneracies and transform non-trivially under lattice space group e.g. with non-zero crystal momentum

9
Metals (in the cuprates) Hole states occupied Electron states occupied

10
Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +

11
Spin density wave theory

12
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Half-filled band

13
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Half-filled band

14
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hot spots Half-filled band

15
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Hot spots Half-filled band

16
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Insulator with Neel order has electrons filling a band, and no Fermi surface Hot spots Insulator Half-filled band

17
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Insulator with Neel order has electrons filling a band, and no Fermi surface Hot spots Insulator Half-filled band

18
Square lattice antiferromagnet

19

20

21
Nature of quantum “disordered” phase

22

23

24

25
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) Nature of quantum “disordered” phase

26
Phase diagram of frustrated antiferromagnets N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009)

27
Phase diagram of frustrated antiferromagnets N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009) Quantum “disordering” spiral order leads to a Z 2 spin liquid

28
Phase diagram of frustrated antiferromagnets N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009)

29
Phase diagram of frustrated antiferromagnets M N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009) Multicritical point M described by a doubled Chern-Simons theory; non-supersymmetric analog of the ABJM model

30
Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

31
Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Collinear magnetic order (Neel) N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

32
Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Valence Bond Solids N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

33
Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

34
Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Spiral magnetic order N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

35
Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Z 2 spin liquids N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

36
Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S M M N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

37
1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

38
1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

39

40
Quantum “disordering” magnetic order

41

42

43
S. Sachdev, M. A. Metlitski, Y. Qi, and S. Sachdev Phys. Rev. B 80, (2009)

44
Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

45
Projected fermion wavefunctions neutral fermionic spinons (Fisher, Wen, Lee, Kim)

46
Projected fermion wavefunctions (Fisher, Wen, Lee, Kim) charged slave boson/rotor

47
Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

48
Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

49
Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

50
Unified spin liquid theory

51

52

53
By breaking SO(4) gauge with different Higgs fields, we can reproduce essentially all earlier theories of spin liquids. We also find many new spin liquid phases, some with Majorana fermion excitations which carry neither spin nor charge

54
1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

55
1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

56
Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +

57
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

58
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

59

60

61

62
“Hot spot” “Cold” Fermi surfaces

63

64

65
Hertz theory

66
Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004). Hertz theory

67

68

69

70
d -wave Cooper pairing instability in particle-particle channel

71

72
Emergent Pseudospin symmetry

73
d -wave Cooper pairing instability in particle-particle channel

74
Bond density wave (with local Ising-nematic order) instability in particle-hole channel

75

76

77
77

78
78 “Bond density” measures amplitude for electrons to be in spin-singlet valence bond: VBS order

79
79 “Bond density” measures amplitude for electrons to be in spin-singlet valence bond: VBS order

80

81
BA C D

82
BA C D Strong anisotropy of electronic states between x and y directions: Electronic “Ising-nematic” order

83
Conclusions Theory for the onset of spin density wave in metals is strongly coupled in two dimensions For the cuprate Fermi surface, there are strong instabilities near the quantum critical point to d-wave pairing and bond density waves with local Ising-nematic ordering

84
Conclusions Quantum “disordering” magnetic order leads to valence bond solids and Z 2 spin liquids Unified theory of spin liquids using Majorana fermions: also includes states obtained by projecting free fermion determinants

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google