Download presentation

Presentation is loading. Please wait.

Published byJosh Lupton Modified over 2 years ago

1
12 - 1 Module 12: Populations, Samples and Sampling Distributions This module provides basic information about the statistical concepts of populations and samples, selecting samples from population and the critical issue of sampling distributions. Reviewed 05 May 05 / MODULE 12

2
12 - 2 Population: The entire group about which information is desired. Sample: A proportion or part of the population - usually the proportion from which information is gathered. Populations and Samples

3
12 - 3 Target Population The participants to whom the answer to the question pertains. The target population definition has two aspects: Conceptual Operational

4
12 - 4 Population Definition Adults and children 10-59 years of age residing in four census tracts in Richfield, a suburb of Minneapolis Adults 25-59 years of age residing in Cedar County, Iowa and certain rural townships in neighboring counties on July 1, 1973 Employees of Pacific Northwest Bell Telephone Company working in King County A population definition gives a clear statement of those included. The following are some examples:

5
12 - 5 Population Person Population of Cholesterol values (mg/dl) 1201 2182 3199............ 128124 129180

6
12 - 6 Population of Cholesterol values

7
12 - 7 Sampling In its broadest sense, sampling is a procedure by which one or more members of a population are picked from the population. The objective is to make certain observations upon the members of the sample and then, on the basis of these results, to draw conclusions about the characteristics of the entire population.

8
12 - 8 Selecting a Sample Haphazard Sample: Haphazard samples are constructed by arbitrarily selecting individual sample members. Random Sample: There are several methods for constructing random samples—we consider only simple random samples. This process operates so that each member of the population has an equal chance of being selected into the sample.

9
12 - 9 Selecting a Sample The selection process: Assign to each member of the population the equivalent of sequential ID number; Use a random number table or computer generated numbers; For computer generated numbers, generate one for each ID number, sort the ID numbers in order according to the random number and take the first on the list up to the point when you have the sample size you need For a table, haphazardly select a starting point and then Ignore numbers that are too large Ignore a number after it appears the first time

10
12 - 10 Fundamental and Important Concept We now begin the discussion of perhaps the most important concept in biostatistics. It is fundamental to understanding and thus interpreting correctly the use of the many statistical tools we will cover in this course. The concept is not complex, in fact, it is rather simple. It does require, however, thinking about issues in a manner that may initially appear somewhat different and unusual.

11
12 - 11 Looking at the Process When we randomly select a sample from a population, we can use the mean for the sample as an estimate or guess as to the value for the mean of the population. This should bring up the question as to how good is this sample mean or sample statistic as a guess for the value of the population mean or population parameter. The essence of this question has to do with how well this process works—the process of using a sample to make guesses about the population.

12
12 - 12 Understanding the Process Two important aspects of this fundamental process: FIRST: It is critical to recognize that it is a process SECOND:It is important to understand how and how well the process works

13
12 - 13 How Good is a Sample Mean The essential question is “How good is a sample mean as an estimate of the population mean?” One way to examine this question is to understand that we used a process that involved randomly selecting a sample from the population and then calculating the mean for the values of the observations in the sample. We can repeat this process as many times as we wish and examine what it produces.

14
12 - 14 Sampling Distributions Individual Observations 149 146 132. n = 1, µ = 150lbs 2 = 100lbs, = 10lbs

15
12 - 15 Sample with n = 5 156 201 105 149 121 189 201 121 149 172 220 201 309 111 198 46 42 162 217 198 156 133 … 261 100 Sample of 5 weights Population of weights

16
12 - 16 Ten Different Samples, n = 5 SamplenMeans2s2 s 15147.4388.149.39 25153.98117.9110.86 35146.50103.6610.18 45155.5391.999.59 55147.87149.6512.23 65143.6066.768.17 75146.8764.238.01 85149.19280.8816.76 95150.05200.2814.15 105146.92173.3613.17 Average148.79133.6911.25

17
12 - 17 Sampling Distributions

18
12 - 18 Standard Error of the Mean The population that includes all possible samples of size n is a long list of numbers and the variance for these numbers can, in theory, be calculated. The square root of this variance is called the standard error of the mean. It is simply the standard deviation for this population of means.

19
12 - 19 Sample with n = 20 113 145 148 151 102 111 181 189 154 114 120 191 105 206 171 133 101 198 127 136 161 Sample of 20 weights

20
12 - 20 Ten Different Samples, n = 20 SamplenMeans2s2 s 120150.86100.9610.05 220146.88122.7011.08 320147.65119.5110.93 420149.3751.077.15 520153.30109.5410.47 620152.83111.9610.58 720148.6291.949.59 820152.16140.8311.87 920154.40179.5613.40 1020151.43115.8510.76 Average150.75114.3910.59

21
12 - 21 Sampling Distributions Individual observations Means for n = 5 Means for n = 20 149153.0151.6 146. 146.4. 151.3. µ = 150 lbs 2 = 100lbs = 10 lbs

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google