Download presentation

Presentation is loading. Please wait.

Published byMyles Bruton Modified over 2 years ago

1
Succincter Mihai P ă trașcu unemployed ??

2
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently Credits: @Max Plank, 2005

3
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently SpaceTime trivial2nO(1)

4
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently SpaceTime trivial2nO(1) arithmetic codingn∙log 2 3Õ(n) 0 1 ⅓⅔ “1”“2”“3” “21” “22” “23”

5
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently SpaceTime trivial2nO(1) arithmetic codingn∙log 2 3Õ(n) block codingn∙log 2 3 + O(n/τ)Õ(τ) redundancy

6
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently SpaceTime trivial2nO(1) arithmetic codingn∙log 2 3Õ(n) block codingn∙log 2 3 + O(n/τ)Õ(τ) Hmm… If a block uses O(1) redundancy, the encoding must spread information around Hmm… If a block uses O(1) redundancy, the encoding must spread information around

7
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently SpaceTime trivial2nO(1) arithmetic codingn∙log 2 3Õ(n) block codingn∙log 2 3 + O(n/τ)Õ(τ) succinct data structuresn∙log 2 3 + O(n/lg n)O(1)

8
Succinct Data Structures “Make data structures use space close to optimum (≈entropy)” dictionaries * classic hash tables use O(n∙lg u) bits * strive for H = log ( u n ) pattern matching * suffix trees use O(n∙lg n) bits * strive for H = n∙lg Σ represent trees with fast navigation (also graphs, etc) * trivial representations use O(n∙lg n) bits * strive for H = lg C n ≈ 2n etc

9
Succinct Data Structures “Make data structures use space close to optimum (≈entropy)” dictionaries * classic hash tables use O(n∙lg u) bits * strive for H = log ( u n ) pattern matching * suffix trees use O(n∙lg n) bits * strive for H = n∙lg Σ represent trees with fast navigation (also graphs, etc) * trivial representations use O(n∙lg n) bits * strive for H = lg C n ≈ 2n etc Down deep, common technique: * blocks of ε lg n elements stored with redundancy ≤1 * tabulation to handle blocks ⇒ Space ≈ H+O(H/(τlg n)) with time O(τ)

10
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently SpaceTime trivial2nO(1) arithmetic codingn∙log 2 3Õ(n) block codingn∙log 2 3 + O(n/τ)Õ(τ) succinct data structuresn∙log 2 3 + O(n/lg n)O(1) [Golynski et al ’07, ’08]n∙log 2 3 + O(n/lg 2 n)O(1)

11
Storing trits Store A[1..n] ∈ {1,2,3} n to retrieve any A[i] efficiently SpaceTime trivial2nO(1) arithmetic codingn∙log 2 3Õ(n) block codingn∙log 2 3 + O(n/τ)Õ(τ) succinct data structuresn∙log 2 3 + O(n/lg n)O(1) [Golynski et al ’07, ’08]n∙log 2 3 + O(n/lg 2 n)O(1) Here…n∙log 2 3 + O(n/lg τ n)O(τ)

12
Discussion Big new concept: ** use recursion to reduce redundancy ** Many applications: succinct data structures with space O(n/lg c n), ∀ c How am I getting away with improving on a constant?

13
A Succinct Proof

14
Spill-Over Encodings Say I want to represent x ∈ X (think X={1,2,3} B ) If |X| is not a power of 2, how to get redundancy <<1 ? New encoding framework: x ➝ M bits + a spill in {1,..,K} Redundancy = wasted entropy = M + lg K – lg |X| … need to approximate lg|X| ≈ integer + lg(integer) M + lg(K-1) < lg|X| < M + lg K ⇒ redundancy ≤ lg K – lg(K-1) = O(1/K)

15
Recursion {1,2,3} … …… 12..M’ 12..M B=lg n 12..M12 M {1,..,K} B’=(lg n)/(lg K) {1,..,K’}

16
Analysis choose K, K’, K’’, … = Θ( κ ) redundancy at each node = O(1/ κ ) times ≈n nodes ⇒ O(n/ κ ) bits degree B’, B’’, … = Θ( (lg n) / (lg κ ) ) go up until O(n/ κ ) nodes left, then waste 1 bit/node ⇒ query time τ = O(lg B’ κ ) ⇒ κ =((lg n) / τ) τ ⇒ redundancy n / ((lg n) / τ) τ ≈ n/lg τ n

17
Succinct(er) Data Structures

18
A Building Block The “Rank/Select Problem”: Store A[1..n] ∈ {0,1} n subject to: * rank(k): return Σ k i=1 A[i] * select(j): find k such that rank(k)=j [Golynski et al ’07]space n + O(n∙lglg n / lg 2 n), query O(1) [P. FOCS’08]space n + O(n / lg c n), query O(c)

19
The Algorithm A[2] … 12..M(Σ) X = ( B Σ ) A[1] A[B] Σ Σ {1,.., K(Σ)} 12..M {1,.., K’(Σ)} spill H(Σ) + H(A|Σ) = n ⇒ H(Σ) + lg K(Σ) + M ≈ n ⇒ H(spill) ≈ n – M

20
The End Questions?

Similar presentations

OK

Succinct Ordinal Trees Based on Tree Covering Meng He, J. Ian Munro, University of Waterloo S. Srinivasa Rao, IT University of Copenhagen.

Succinct Ordinal Trees Based on Tree Covering Meng He, J. Ian Munro, University of Waterloo S. Srinivasa Rao, IT University of Copenhagen.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on business cycle phases Ppt on competition commission of india Convert free pdf to ppt online Ppt on regional transport office ahmedabad File type ppt on cybercrime jobs Download ppt on jammu and kashmir tourism Ppt on national parks and sanctuaries Ppt on data collection methods pdf Ppt on acids bases and salts for class 7 What does appt only meanings