Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spatial Analysis of Geochemical Diagrams for the Classification of Igneous Rocks Using ArcGIS: A Prototype for the Central Colorado Assessment Project.

Similar presentations

Presentation on theme: "Spatial Analysis of Geochemical Diagrams for the Classification of Igneous Rocks Using ArcGIS: A Prototype for the Central Colorado Assessment Project."— Presentation transcript:

1 Spatial Analysis of Geochemical Diagrams for the Classification of Igneous Rocks Using ArcGIS: A Prototype for the Central Colorado Assessment Project By John Horton - Penn State MGIS Candidate Physical Scientist - US Geological Survey July 8, 2008 Academic Advisor: Tim White

2 The Central Colorado Assessment Project (CCAP) The Front Range urban corridor of Colorado has experienced rapid growth in recent years. Raises concerns of resources and land management issues faced by governing agencies in the region. Project being conducted by the USGS: “to provide comprehensive geoscience data and interpretations that will allow federal, state, and local land management entities to make informed land-use decisions in central Colorado.”

3 Updating Geochemical Data Creation of updated geochemical databases (including rock samples) is essential in interpretations of geology in the study area. Enhances understanding of landslide hazards, mineral resources potential, and surface - groundwater pollution due to acid mine drainage related to historic mining. Requires petrologist assigned to project to classify thousands of rock samples in a standardized way to help interpret the geologic setting throughout the area. Database of classifications will be spatially included with updated digital geology, structural, and other geochemical data (soil/stream sediments) to aid in spatial analysis of the area.


5 Rock Types (quick background) Three basic types of rocks on Earth: Igneous: rocks derived from melt. granite, basalt, gabbro Two major subtypes: Intrusive – plutonic (deep cooling within upper crust) Extrusive – volcanic (rapid cooling on surface) Sedimentary: rocks derived from physical and chemical processes of the earth. sandstone, limestone, shale Metamorphic: transformation of existing rock types by heat and/or pressure. marble (limestone), slate (shale), gneiss (granite)

6 Igneous Rocks - Significance Geologically important 95% of upper crust is igneous in origin Provides information about composition of the Earth’s mantle and processes occurring deep within the Earth. Radiometric dating provides absolute ages of rock formation or alteration – allows determination of approximate ages of other rock types (sedimentary) for correlating ages of geologic units worldwide. Characteristics determine setting in which rock formed; important for understanding tectonic processes. Majority of the World’s and Colorado’s mineral deposits are located within igneous rocks.

7 Rock Classification Field criteria - location and structural characteristics present (geologic setting). Texture – different types of crystallization. Mineralogy – minerals present (thin section) Geochemical characteristics – chemical analysis of samples. This is the type of classification that will be used in this project.

8 Geochemistry of Igneous Rocks Rock samples are chemically analyzed using different methods to identify various elements: inductively coupled plasma (ICP), x-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA) are the primary ones. Whole rock concentrations of various elements, compounds, and isotopes can be used to classify the rock by name and also aid in petrogenesis classifications. Multiple variation diagrams (graphs) have been published over the past 50+ years to classify igneous rocks. The International Union of Geological Sciences (IUGS) formed a commission in 1970 in order to standardize the various classification schemes. There are many other published diagrams from the literature that provide more specific classifications (missing from IUGS diagrams) and also petrogenesis classifications based on geochemistry.



11 A Current Day in the Life of an Igneous Petrologist Representative rock samples are prepared for analysis, analysis is returned from lab, get table of concentrations for various elements/compounds. Plot values on multiple diagrams for classification – visually identify classification and record. Very tedious process. Requires using multiple graphing programs (1 program doesn’t have all the diagrams).  Learning multiple interfaces.  Merging of multiple output files.  Hard to automate (different programs have different scripting/schemes). Compare rock concentrations to various geochemical rock databases (GEOROC, PETDB). Also tedious. Results not always useful.  Requires data entry of multiple specific chemical parameters.  Multiple matches to sample; classification uncertain.

12 Question: Is it possible for ArcGIS to automatically return classifications based on point positions in graph space? Need to classify 5,000+ rock samples within CCAP study area from various sources. The current National Geochemical Database only has 1445 igneous rock samples classified in the study area. Focusing on igneous rocks for now since they are the most dominant lithology. Usual classification process is very tedious and infeasible for this large of a sample population. An automated method is needed to facilitate the classification process. The petrologist can then focus efforts on interpretation and collaboration with other scientists on project. Answer: YES! ArcGIS can certainly be used to help automate the process. A spatial join will return classifications (point in polygon spatial analysis using geoprocessing tools) and a Python script can be written to repeat the process through all the diagrams.

13 Overview: Using ArcGIS to ‘automate’ the classification process. Remove geographic portion of GIS by not defining a projection. Space will be entirely numeric. Treat diagrams as ‘maps’ and create polygons of classifications from them (each diagram is a separate shapefile). Scan complex diagrams (curved lines) and spatially reference image to numeric space using diagram’s chemical parameters. OR provided coordinates of polygons (boundaries) by petrologist. Plot each rock sample’s chemical concentrations for the appropriate diagram as XY points. Perform a spatial join of points in polygons to return classification attributes from polygon and assign it to rock sample. Output a table with all classification results from all the diagrams (shapefiles) to petrologist for further analysis. Creation of an igneous rock classification geodatabase for CCAP project. Will be able to query on rock name/tectonic setting. Example: show me all the samples classified as gabbro within the study area; instead of show me all samples with 48-52% silica oxide, 5-9% magnesium oxide and greater than 8% calcium oxide.

14 Step 1 - Digitizing the Diagrams Scan complex classification diagrams (curved lines) and spatially register image to numeric graph space in Arc.


16 Step 1 - Digitizing the Diagrams Scan complex classification diagrams (curved lines) and spatially register image to numeric graph space in Arc. Create polygon shapefile and name it according to name of classification diagram. Add field for classifications (name of field same as name of diagram; since final table output will have attributes from multiple diagrams). Digitize polygons from diagram and attribute the classifications.







23 Digitizing – Alternate Method Diagrams with straight lines or very complex structure. Given coordinates of polygons (boundaries) by petrologist, so a point file can be generated and then polygons are digitized by snapping to these points.




27 PlotTypeReference SiO2 vs K2ObinaryPeccerillo and Taylor 1976 Sr vs RbbinaryDeWitt, adapt of Ewart 1982 SiO2 vs K2ObinaryEwart 1982, modif. Pec. & Taylor 1976 Ti/100 vs VbinaryShervais 1982 SiO2 vs Na2O+K2ObinaryCox at al. 1979, revised by Wilson 1989 SiO2 vs Na2O+K2ObinaryCox at al. 1979 Fe2O3+MgO vs Al2O3/SiO2binaryBhatia 1983 Fe2O3+MgO vs TiO2binaryBhatia 1983 Zr/10 vs Sc vs ThternaryBhatia 1986 Sc vs Th vs LaternaryBhatia 1986 Y vs Zr/4 vs 2NbternaryMeschede 1986 P2O5*10 vs MnO*10 vs TiO2ternaryMullen 1983 SiO2/Al2O3 vs Fe2O3/K2ObinaryHerron 1988 K2O/Na2O vs SiO2/Al2O3binaryRosert 1986 SiO2 vs K2O/Na2ObinaryRosert 1986 4Fe-2Mg-3Ca vs 12CCO2-4Al-8(Na+K)binaryDeWitt 1994 (IF1 vs IF2) Ta/Yb vs Th/YbbinaryPearce 1982 Ta vs Th vs Hf/3ternaryWood 1980 Nb/16 vs Th vs Hf/3ternaryWood 1980 Partial List of Diagrams (50+ when finished)

28 Ta*3 vs Hf vs Rb/30ternaryHarris 1986 Nb*3/16 vs Zr/40 vs Rb/30ternaryHarris 1986 Ta vs Th vs Hf/3ternaryPearce 1996 mod of Wood Nb/16 vs Th vs Hf/3ternaryPearce 1996 mod of Wood Nb/Y vs Zr/TibinaryWinchester and Floyd 1977 + Pearce 1996 Y*3 vs Zr vs Ti/100ternaryPearce and Cann 1973 - mod 1996 Nb/8 vs La/10 vs Y/15ternaryCabanis? and Lecolle 1989 Ta*2 vs Th vs Tb*3ternaryCabanis? and Thieblenont? 1988 MgO vs Al2O3 vs FeO + TiO2ternaryJensen 1976 Y*3 vs Zr vs Ti/100ternaryPearce and Cann 1973 Zr vs TibinaryPharoah? Nb/Y vs Zr/TiO2binaryWinchester and Floyd 1977 4Si-11(Na+K)-2(Fe+Ti) vs 6Ca+2Mg+1AlbinaryR1 vs R2 ???? 4Si-11(Na+K)-2(Fe+Ti) vs 6Ca+2Mg+1AlbinaryR1 vs R2 ???? 4Si-11(Na+K)-2(Fe+Ti) vs 6Ca+2Mg+1AlbinaryR1 vs R2 ???? 4Si-11(Na+K)-2(Fe+Ti) vs 6Ca+2Mg+1AlbinaryR1 vs R2 ???? Alkalinity Numeric Yb+Ta vs RbbinaryPearce et al. 1984 Yb vs TabinaryPearce et al. 1984 Y+Nb vs RbbinaryPearce et al. 1984 Y vs NbbinaryPearce et al. 1984 SiO2 vs A/CNKbinary?????? Peraluminous SiO2 vs A/CNKbinary?????? Peraluminous (FeO+.89Fe2O3)/(FeO+.89Fe2O3+MgO) vs SiO2binary?????? Iron Oxides K2O/K2O+Na2O vs SiO2binary?????? Potassium Oxides

29 Step 2 - Scripting A Petrologist will have a table of multiple rock samples each with chemical concentrations from the results of analyses. Need to classify all the samples using multiple diagrams. I will create a Python script to batch process all the samples through all the diagrams. Use of ArcGIS by non-GIS scientists. USGS has an enterprise license for ArcGIS - installation and use is free; hence no new software expense. The Python script utilizes the geoprocessing tools of Arc without prompting the user for commands. Possibly create a custom igneous classification tool using ArcObjects.


31 Initial Problems/Issues Some classification diagrams have log values (must be re-plotted into normal arithmetic scales). Some diagrams are ternary (use 3 variables). These must be repositioned using only 2 variables. Some diagrams have uneven X and Y axis ranges. One set of values must be multiplied/divided by a constant in order to spatially register the image in numeric space. Limited scripting experience. Many new samples are not in digital format. Relying on others to receive digital tables of the data for our use.

32 Expected results Creation of an igneous rock classification feature class within a geodatabase for the CCAP study area. Addition of thousands of previously unclassified samples. New spatial queries on rock samples by different classifications can now be analyzed (instead of relying on chemical values only). Creation of maps and spatial analyses of new information combined with other GIS layers as directed by CCAP project chiefs. Publication of the ArcGIS igneous rock classification process as a USGS Open File Report (public) so anyone in the world can use it for other projects. Illustrate that this GIS-based classification process can be extended to other rock types or to other classification problems in other disciplines.



35 Project Timeline May: Digitized a few diagrams and developed a prototype script. Tested on small sample population. A few bugs, but worked correctly. June/July: Continue to digitize diagrams as they are received. Refine script to ensure correct output for petrologist. August: Finalize diagram list and all diagram polygons. Continue testing script on more sample suites from petrologist; edit as necessary. Finalize script and give to petrologist for testing. Verify results with previously classified samples. Sept/Oct: Receive and incorporate feedback from petrologist into finalized versions of script and diagram shapefiles. Get approval on results and begin work with petrologist to classify all samples within the CCAP study area. Incorporate or provide output for use with other spatial databases in project (geology, structure, geochemistry). Analyses as directed by project chiefs. Nov/Dec: Present results at a USGS talk and a presently unknown conference. Publish results with USGS publications.

36 Thank You! Questions? Central Colorado Assessment Project website: USGS - Central Mineral Resources Team website:

Download ppt "Spatial Analysis of Geochemical Diagrams for the Classification of Igneous Rocks Using ArcGIS: A Prototype for the Central Colorado Assessment Project."

Similar presentations

Ads by Google