Download presentation

Presentation is loading. Please wait.

Published byCadence Wittie Modified over 3 years ago

1
R Basics Xudong Zou Prof. Yundong Wu Dr. Zhiqiang Ye 18 th Dec. 2013 1

2
R Basics 2 History of R language How to use R Data type and Data Structure Data input R programming Summary Case study

3
3 History of R language

4
4

5
5 Robert Gentleman Ross Ihaka

6
6 History of R language

7
7

8
8

9
9

10
10 History of R language

11
11 History of R language

12
12 History of R language

13
13 History of R language

14
14 History of R language

15
15 History of R language

16
16 History of R language

17
17 2013-09-25: Version: R-3.0.2

18
18 History of R language

19
19 History of R language

20
20 History of R language

21
21 History of R language

22
22 History of R language

23
23 History of R language 5088

24
What is R? R is a programming language, and also a environment for statistics analysis and graphics Why use R R is open and free. Currently contains 5088 packages that makes R a powerful tool for financial analysis, bioinformatics, social network analysis and natural language process and so on. More and more people in science tend to learn and use R # BioConduct: bioinformatics analysis(microarray) # survival: Survival analysis

25
控制台 从这里输 入命令 How to use R

26
？用来获 取帮助 新建或打 开 R 脚本 点这里添 加 R 包 How to use R

27
Data type and Data structure numeric : integer, single float, double float character complex logical Data structure in R: Data type in R : ObjectsClass Mixed-class permitted ？ Vectornumeric, char, complex, logicalno Factornumeric, charno Arraynumeric, char, complex, logicalno Matrixnumeric, char, complex, logicalno Data framenumeric, char, complex, logicalyes listnumeric, char, complex, logical, func, exp…yes

28
28 Vector and vector operation Vector is the simplest data structure in R, which is a single entity containing a collection of numbers, characters, complexes or logical. # Create two vectors: # Check the attributes: # basic operation on vector: 注意这个向 左的箭头

29
29 Vector and vector operation # basic operation on vector: > max( vec1) > min (vec1) > mean( vec1) > median(vec1) > sum(vec1) > summary(vec1) > vec1 > vec1[1] > x <- vec1[-1] ; x [1] > vec1[7] <- 15;vec1

30
30 array and matrix > x <- 1:24 > dim( x ) <- c( 4,6) # create a 2D array with 4 rows and 6 columns > dim( x ) <- c(2,3,4) # create a 3D array An array can be considered as a multiply subscripted collection of data entries.

31
31 array and matrix > x <- 1:24 > array( data=x, dim=c(4,6)) > array( x, dim= c(2,3,4) ) array() array indexing > x <- 1:24 > y <- array( data=x, dim=c(2,3,4)) > y[1,1,1] > y[,,2] > y[,,1:2]

32
32 array and matrix > class(potentials) # “matrix” > dim(potentials) # 20 20 > rownames(potentials) # GLY ALA SER … > colnames(potentials) # GLY ALA SER … > min(potentials) # -4.4 Matrix is a specific array that its dimension is 2

33
33 list List is an object that containing other objects as its component which can be a numeric vector, a logical value, a character or another list, and so on. And the components of a list do not need to be one type, they can be mixed type. >Lst <- list(drugName="warfarin",no.target=3,price=500, + symb.target=c("geneA","geneB","geneC") >length(Lst) # 4 >attributes(Lst) >names(Lst) >Lst[[1]] >Lst[[“drugName”]] >Lst$drugName

34
34 Data Frame A data frame is a list with some restricts: ① the components must be vectors, factors, numeric matrices, lists or other data frame ② Numeric vectors, logicals and factors are included as is, and by default character vectors are coerced to be factors, whose levels are the unique values appearing in the vector ③ Vector structures appearing as variables of the data frame must all have the same length, and matrix structures must all have the same row size Names of components

35
35 Data Frame > names(cars) [1] "Plant" "Type" "Treatment" "conc" "uptake“ > length(cars) # 2 > cars[[1]] > cars$speed # recommended > attach(cars) # ?what’s this > detach(cars) > summary(cars$conc) # do what we can do for a vector

36
36 Data Input scan(file, what=double(), sep=“”, …) # scan will return a vector with data type the same as the what give. read.table(file, header=FALSE, sep= “ ”, row.names, col.names, …) # read.table will return a data.frame object # my_data.frame <- read.table("MULTIPOT_lu.txt",row.names=1,header=TRUE) # from SPSS and SAS library(Hmisc) mydata <- spss.get(“test.file”,use.value.labels=TRUE) mydata <- sasxport.get(“test.file”) #from Stata and systat library(foreign) mydata<- read.dta(“test.file”) mydata<-read.systat(“test.file”) # from excel library(RODBC) channel <- odbcConnectExcel(“D:/myexcel.xls”) mydata <- sqlFetch(channel, “mysheet”) odbcclose(channel) From other software load package

37
37 Operators

38
38 Control Statements R Programming # switch( statement, list) # repeat {…}

39
39 Function R Programming Definition ： Example ： matrix.axes <- function(data) { x <- (1:dim(data)[1] - 1) / (dim(data)[1] - 1); axis(side=1, at=x, labels=rownames(data), las=2); x <- (1:dim(data)[2] - 1) / (dim(data)[2] - 1); axis(side=2, at=x, labels=colnames(data), las=2); }

40
40 Summary Data type and Data Structure numeric, character, complex, logical vector, array/matrix, list, data frame Data Input scan, read.table load from other software: SPSS, SAS, excel Operators : <- R Programming:

41
41 Case study Residue based Protein-Protein Interaction potential analysis ： Lu et al. (2003) Development of Unified Statistical Potentials Describing Protein-Protein Interactions, Biophysical Journal 84(3), p1895-1901

42
42 Reference CRAN-Manual ： http://cran.r-project.org/ http://cran.r-project.org/ Quick-R ： http://www.statmethods.net/index.html http://www.statmethods.net/index.html R tutorial ： http://www.r-tutor.com/ http://www.r-tutor.com/ MOAC ： http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/matrix_cont our/ http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/matrix_cont our/

43
43

Similar presentations

OK

Basics of Using R Xiao He 1. AGENDA 1.What is R? 2.Basic operations 3.Different types of data objects 4.Importing data 5.Basic data manipulation 2.

Basics of Using R Xiao He 1. AGENDA 1.What is R? 2.Basic operations 3.Different types of data objects 4.Importing data 5.Basic data manipulation 2.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ovary anatomy and physiology ppt on cells Ppt on isobars and isotopes of uranium Convert pdf to word ppt online Ppt on electronic media in communication Ppt on network load balancing Ppt on refraction of light through glass slab Ppt on waves tides and ocean currents lab Ppt on you can win book Ppt on kinetic energy and potential energy Ppt on history of cricket for class 9