Download presentation

Presentation is loading. Please wait.

Published byAndrew Sare Modified about 1 year ago

1
Conceptual Graphs (Sowa, JF 2008, ‘Conceptual Graphs’, in Handbook of Knowledge Representation) Presented by Matt Selway 1

2
Conceptual Graphs basics ~(Ex)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) ^ ~(Ey)(Bus(y) ^ Instrument(x, y))) 2

3
Conceptual Graphs basics ~(Ex)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) ^ ~(Ey)(Bus(y) ^ Instrument(x, y))) 3

4
Conceptual Graphs basics ~(Ex)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) ^ ~(Ey)(Bus(y) ^ Instrument(x, y))) 4

5
Conceptual Graphs basics ~(Ex)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) ^ ~(Ey)(Bus(y) ^ Instrument(x, y))) 5

6
Conceptual Graphs basics ~(Ex)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) ^ ~(Ey)(Bus(y) ^ Instrument(x, y))) 6

7
Conceptual Graphs basics (Ax)(Ay)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) -> Bus(y) ^ Instrument(x, y)) 7

8
Conceptual Graphs basics (Ax)(Ay)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) -> Bus(y) ^ Instrument(x, y)) 8

9
Conceptual Graphs notations Extended CGIF [If: [Person: John] [Go *x] [City: Boston] (Agent ?x John) (Destination ?x Boston) [Then: [Bus *y] (Instrument ?x ?y) ]] First Order Logic ~(Ex)(Person(John) ^ City(Boston) ^ Go(x) ^ Agent(x, John) ^ Destination(x, Boston) ^ ~(Ey)(Bus(y) ^ Instrument(x, y))) 9

10
Conceptual Graphs notations Extended CGIF -> CLIF (exists ((x Go)) (if (and (Person John) (City Boston) (Agent x John) (Destination x Boston) ) (exists ((y Bus)) (Instrument x y) ) ) ) Extended CGIF -> Core CGIF ~[ [*x] (Person John) (Go ?x) (City Boston) (Agent ?x John) (Destinination ?x Boston) ~[ [*y] (Bus ?y) (Instrument ?x ?y) ]] Core CGIF -> CLIF (not (exists (x) (and (Person John) (Go x) (City Boston) (Agent x John) (Destination x Boston) (not (exists (y) (and (Bus y) (Instrument x y)))) ) ) ) 10

11
Conceptual Graphs reasoning Basic Rules – Copy Simplify – Restrict Unrestrict – Join Detach Possible Effects – Equivalence (copy, simplify) – Specialisation (restrict, join) – Generalisation (unrestrict, detach) 11

12
Conceptual Graphs reasoning 12 CopySimplify

13
Conceptual Graphs reasoning 13 RestrictUnrestrict

14
Conceptual Graphs reasoning 14 JoinDetach

15
Conceptual Graphs reasoning 15 Maximal Join

16
Conceptual Graphs proof procedure Proof of ((p -> r) ^ (q -> s)) -> ((p ^ q) -> (r ^ s)) in 7 steps (Sowa 2008) 16

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google