Presentation is loading. Please wait.

Presentation is loading. Please wait.

Regaining Speed for Sport in Rehab Trina Radske-Suchan, PT, CSCS.

Similar presentations


Presentation on theme: "Regaining Speed for Sport in Rehab Trina Radske-Suchan, PT, CSCS."— Presentation transcript:

1 Regaining Speed for Sport in Rehab Trina Radske-Suchan, PT, CSCS

2 Prepares body for sport-specific stress/loads Enhances sport-specific neuromuscular patterns Increases muscle efficiency Decreases risk of further sports injury OPTIMAL SPORTS PERFORMANCE Why Speed Training in Rehab?

3 General POC Regain ROM Recover Balance Regain Strength Train Muscle Endurance/Conditioning Develop Plyometric skills Speed Training

4 Regain Strength Static Strength –Open and closed kinetic chain exercises VMO, Hamstrings/Glutes, Hip –Build a strong foundation Dynamic or Functional Strength –Needs to involve core –Multi-joint movements –Whole body coordination Sport Specific Strength

5 Strengthening specific to explosive sprinting Force x Velocity= Power Therefore, one needs to tolerate developing power in order to return to sprinting DB snatch; resisted HS turnover or knee drive

6 Specificity of Training According to theory of “Specificity of Training”, what are we doing in the clinic that is specific to running or sprinting? Why is this important? How would a patient be best prepared for a plyometric activity such as running or sprinting?

7 Specificity of Training Specific exercise elicits specific adaptations, thus creating specific training effects (McArdle, Katch, & Katch 1981) Functional exercise works on the principle of specificity of training In this case, how are we addressing speed which is functional for most athletes?

8 Running is Plyometric Running is a plyometric activity Plyometric training is a type of athletic enhancement thought to produce significant improvements in maximal strength, power development, increasing speed, improving vertical jump height, and reducing injury –Masamoto et al 2003, Matavulj 2001, Diallo et al 2001, ACSM 2001, Rimmer and Slievert 2000, Hewett et al 1996, Newton and Kraemer 1994, Bedi et al 1990, Borkowski 1990, Radcliffe and Gambetta 1986, Bosco et al 1982.

9 Science behind Plyometrics A muscle that is stretched prior to a concentric contraction will contract with more force and contract more rapidly Produces a more explosive action Mechanical versus Neuromuscular Models Stretch-Shortening cycle

10 Mechanical Model Muscles and tendons create elastic energy Elastic energy is stored as a result of a stretch Energy is lost if not followed by immediate contraction Energy is released when followed immediately by a contraction Series elastic component Eccentric contraction loads the muscle prior to the explosive concentric contraction The faster and greater the load, the more powerful the contraction

11 Neuromuscular Model A neuromuscular event The Stretch Reflex causes the muscle to contract in response to being stretched –Stretch (how much and how fast) activates the sensory spindle receptors in the muscle –Message is sent to spinal cord via one synaptic junction –Motor horn cells in spinal cord respond as a protective mechanism –Causes a contraction of muscle –Inhibits the antagonist muscle from contracting (Chu 1983) –Results in powerful concentric muscle action

12 Stretch Reflex

13 Develop Plyometric Skills

14 Plyometric Training Plyometric training utilizes powerful muscle contractions to enhance the explosive movements used in sports The fundamental reason to train with plyometrics is to reduce the ground contact time that an athlete spends when running or jumping (“Plyometric Training for Youth”, www.donchu.com)

15 Speed Training This type of training enhances an athletes ability to increase speed of movement and improve power production (American College of Sports Medicine, 2001) The use of speed/sprint training is an applicable training method of improving explosive performance of athletes (J Strength Cond Res. 2007) Clinical relevance: Both plyometric and dynamic stabilization/balance exercises should be included in injury-prevention protocols (Am J Sports Med. 2006)

16 History of Speed Training Prior to the 1960’s, genetics were believed to be the only factor in determining an athlete’s speed or quickness.

17 History of Speed Training 1960’s – Began questioning the theory of genetics & began testing neuromuscular system to see if different training techniques influenced speed 1960’s – Dr. Dintiman towed athletes behind a motor scooter and automobile to force faster speeds and longer strides Mid 1970’s – Bob Ward was hired as the 1 st full time strength & conditioning coach for the Dallas Cowboys to include speed training

18 Clinical Assessment Identify strengths and weaknesses to design an individualized speed improvement/rehab program or to assess readiness for speed training after injury  Strength  Muscle Balance  Flexibility/ROM  Power  Quickness/Agility  Sprint Form/Mechanics  Past Medical History

19 Assessing Sprint Mechanics Physical therapists should know what to look for when assessing running and sprint mechanics Patients do not automatically regain speed for sport after injury Not unlike gait training in the clinic No other profession can assess motor deficits or movement disorders as well as physical therapists

20 Sprint Mechanics Thigh rises to parallel Touchdown is under the body’s center of gravity Touchdown is with ball of foot ~145° angle between thighs

21 Compare to Longer Distance Running Mechanics Thigh rises to 45° Touchdown is slightly in front of the body Touchdown is with the entire foot (foot rocker) ~90° angle between thighs

22 Sprint Mechanics Arm Action  Counteracts hip & leg rotational forces  Keeps body aligned  Maintain 90° elbow angle  Hands & shoulders stay relaxed  Thumb to nose level & hand past buttocks

23 Arm Action

24 Sprint Mechanics Leg Action  Foot dorsiflexed except during ground contact  Foot should leave ground in a straight line towards buttocks  As speed increases heels get closer to buttocks  Knee drives close to 90°, thigh parallel to ground, pelvis maintains posterior tilt  Knee extends & straightens underneath hip  Stride completion is ensured with a powerful “push-off” the ground

25 Sprint Mechanics

26 Posture  Acceleration: 45° lean  Maximum speed: 70° to erect  Straight line from ankle to head

27 Sprint Drills in the Clinic Ankling  Quick “push-off” ground with balls of feet  Minimize ground contact time  Emphasize quick “toe-up”/dorsiflexion Straight Leg Shuffle  Straight-legged ankling  Shuffle picks up tempo as you incorporate arm drive A’s  Focuses on beginning of running cycle  Alternate knee drives, up & outwards  Be explosive with knee drives  Foot plants underneath hips  Forward progression

28 Sprint Drills B’s  Continuation of A’s  As knee drives up & outwards, kick heel straight ahead  Pull down & sweep heel under hip in a cyclic manner C’s  Heel is drawn up towards buttocks  In a cyclic manner, heel accelerates down toward ground  Foot “paws” ground & heel draws back up to buttocks

29 Sprint Drills A Skips  If there is room in clinic  Drive knees upwards & outwards in skipping motion  Aim for height & distance over the ground  Minimize ground contact time  Knee drive is explosive

30 Sprint Drills High Knees  Alternate knee drives as quickly as possible  Minimize ground contact time  Include appropriate arm drives Pawing Drills  Individual uses support of wall or fence  Starting position: opposite knee 90° & thigh parallel to ground  Foot is dorsiflexed or in “toe-up” position  On cue: foot drives towards ground, “paw” ground, heel pulls towards buttocks in a cyclic manner

31 Sprint Drills Wall Drills  Aim: quick knee drives & minimize ground contact  Position: facing against wall  Practice at varying degrees of body lean  One leg in 90° of knee flexion, foot in “toe-up” position  On cue: quickly switch leg position Fast Leg Drill  Much like C drill except incorporated into running rhythm  Can do single or alternate leg  Emphasize quick turnover  Pattern: Stride, stride, fast leg, stride, stride, fast leg  Include appropriate running arms

32 Plyometric Drills for Speed Development DL – DL jumps SL – DL jumps DL – SL jumps Tuck jumps Lateral hops Alternate leg hops/bounds Single leg hops/bounds

33 Enhancing Sport Specific Speed Instructions to patient’s coach or trainer Increase stride length  Incorporate speed resisted training Increase stride frequency  Incorporate speed assisted training Improve quickness  Incorporate sport specific agility & plyometric drills

34 ↑Speed = ↑Stride Frequency & ↑Stride Length Stride Frequency  Number of strides taken in a given time or distance  Increased by speed-assisted training Speed-Assisted Training  Bungee cord running  Down hill running

35 ↑Speed = ↑Stride Frequency & ↑Stride Length Stride Length  Distance covered from heel strike of left foot to heel strike of left foot again  Optimal stride length is 2.3 – 2.5x leg length at full speed  Increased by speed resisted training Speed Resisted Training  Weighted vests  Parachutes  Weighted sled  Partner resisted running  Bungee cords

36 Periodized Training Speed training should be accompanied by continued strength training and addition of power training Periodized training is the best method to reduce over-training injuries and optimize training effects

37 References American College of Sports Medicine, “Plyometric Training for Children and Adolescents,” December 2001, www.acsm.org. Baechle, T.R., Earle, R.W., eds. Essentials of Strength Training and Conditioning, 2 nd ed. Champaign, IL: Human Kinetics. 2000. Chu, D.A. Jumping into Plyometrics. 2 nd ed. Champaign, IL: Human Kinetics, 1998. Dintiman, G., Ward. Sports Speed. 3 rd ed. Champaign, IL: Human Kinetics. 2003. Dintiman, G., Ward, B., Tellez, T. Sports Speed. 2 nd ed. Champaign, IL: Human Kinetics. 1997. Foran, B., ed. High Performance Sports Conditioning. Champaign, IL: Human Kinetics. 2001. Kotzamanidis C. Effect of plyometric training on running performance and vertical jumping in prepubertal boys. J Strength Cond Res. 2006 May;20(2):441-5. Markovic G, Jukic I, Milanovic D, Metikos D. Effects of sprint and plyometric training on muscle function and athletic performance. J Strength Cond Res. 2007 May;21(2):543-9.

38 References Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006 Mar;34(3):445-55. Norkin, C.C., Levangie, P.K. Joint Structure and Function. 2 nd ed. Philadelphia, PA: F.A. Davis Company. 1992. “Plyometric Training for Youth”, Donald A Chu. www.donchu.com Radcliffe, J.C., Forentinos, R.C. High Powered Plyometrics. Champaign, IL: Human Kinetics. 1999. Saunders PU, et al. Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res. 2006 Nov;20(4):947-54. Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003 Mar;89(1):1-7. Yeisis, M. Explosive Running. Chicago, IL: Contemporary Books. 2000.

39 THANK YOU


Download ppt "Regaining Speed for Sport in Rehab Trina Radske-Suchan, PT, CSCS."

Similar presentations


Ads by Google