# Earth in Space. The Universe Big Idea 1: The Universe has observable properties and structure Big Idea 2: Regular and predictable motions of objects in.

## Presentation on theme: "Earth in Space. The Universe Big Idea 1: The Universe has observable properties and structure Big Idea 2: Regular and predictable motions of objects in."— Presentation transcript:

Earth in Space

The Universe Big Idea 1: The Universe has observable properties and structure Big Idea 2: Regular and predictable motions of objects in the Universe can be described and explained as the result of gravitational forces.

Inquiry2.1 Scaling the- Sun-Earth-Moon System Rotation: The movement of one object as it turns or spins around a central point or axis Revolve: To move in a curved path or orbit. (Verb) Revolution: The movement of one object around a central object. (Adjective)

Revolution/Rotation GLE: 6.2.C.a: Illustrate and explain a day as the time it takes a planet to make a full rotation about its axis. You should be able to explain that a day on Earth is 24hours and that this is the time it takes Earth to make one compete rotation on its axis. Click on this link.You should be able to explain that a day on Earth is 24hours and that this is the time it takes Earth to make one compete rotation on its axis. Click on this link. You should be able to explain that a day on Earth is 24hours and that this is the time it takes Earth to make one compete rotation on its axis. Click on this link.You should be able to explain that a day on Earth is 24hours and that this is the time it takes Earth to make one compete rotation on its axis. Click on this link. Extra- Why does the Earth rotate? Click on this link to find out. You should be able to write that: A day is the time it takes Earth to make one full counterclockwise rotation on its axis.

Revolution/Rotation GLE: 6.2.C.b: Diagram the path the Earth (planet) takes as it revolves around the Sun 1.You should be able to draw Earth’s Orbital Motion. Be sure to show the counterclockwise rotation and counterclockwise revolution. Use arrows to show this. Click on this link to see the pictureEarth’s Orbital Motion. Be sure to show the counterclockwise rotation and counterclockwise revolution. Use arrows to show this. Click on this link to see the picture 2.You should be able to draw Earth’s Orbital motion- you should be able to draw this. Click on this linkEarth’s Orbital motion- you should be able to draw this. Click on this link 3.You should be able to draw Earth’s Orbital Motion- you should be able to draw this. Click on this linkEarth’s Orbital Motion- you should be able to draw this. Click on this link

Revolution/Rotation GLE: 6.2.C.c Illustrate and explain a year as the time it takes a planet to revolve around the Sun. 1.You should be able to draw and write a sentence explaining what a year is. Click on this link.You should be able to draw and write a sentence explaining what a year is. Click on this link. 2. A year is the time it takes a planet to make one full revolution around the Sun. Click on this link.A year is the time it takes a planet to make one full revolution around the Sun. Click on this link. 3.A year is the time it takes a planet to make one full revolution around the Sun.

Revolution/Rotation GLE: 6.2.C.d: Explain the relationships between a planet’s length of year (period of revolution) and its position in the solar system. You should be able to explain that the further a planet is away from the Sun, the longer the year: or the closer a planet is to the Sun, the shorter its year.You should be able to explain that the further a planet is away from the Sun, the longer the year: or the closer a planet is to the Sun, the shorter its year. Earth-Sun Geometry click on this linkEarth-Sun Geometry Geoscience Animations click on this linkGeoscience Animations

Inquiry2.2 Scaling the- Sun-Earth-Moon System Distances The Sun is 150 million kilometers from Earth or about 93 million miles. One million Earths can fit inside the sun. 109 Earths can fit across the Earth’s diameter.

Positions GLE: 6.1.A.c: Describe the relative proximity/Position of common celestial bodies (i.e., Sun, Moon, planets, smaller celestial bodies such as comets and meteors, other stars) in the sky to the Earth. The Sun is 150,000,000km or 93million miles or 12,000 Earths away from the Earth. Earth’s diameter is 12,756km, so: 150,000,000km/12,756km = 12,000Earths which means the Sun is about 12,000 Earth’s away The Moon is 30 Earths, or 384,000km from the Earth. Earth and moon to scale: Click on this link.

Positions GLE: 6.2.A.d: Relate the apparent east-to-west changes in the positions of the Sun, other stars, and planets in the sky over the course of a day to Earth’s counterclockwise rotation. The Earth rotates counter-clockwise from west to east. Because of this the Sun, stars, and planets have an apparent motion (they appears to be, but it is not) moving or rising from east to west in a clockwise direction. So, the sun appears to be moving across the sky but it is not. The Earth’s rotation causes this apparent motion. Note how the Sun is lower in the sky in December and higher in the sky in June. Click on this link.Note how the Sun is lower in the sky in December and higher in the sky in June. Click on this link.

Positions GLE: 6.2.C.f Relate the axial tilt and the orbital position to the intensity of sunlight falling on the Earth in different SEASONS. Click on the video below. GLE GLE: 6.2.A.c: Describe how, in the Northern Hemisphere, the Sun appears lower in the sky during the winter and higher in the sky during the summer. Because the Earth is tilted toward the sun in summer and away from the sun in the winter, the height (angle of separation) of the Sun is higher in the summer than it is in the winter. This higher angle of separation of the Sun in the orbital position of summer causes the sun to be higher in the sky, longer days, shorter shadows, and a higher intensity of sunlight in the summer This lower angle of separation of the Sun in the orbital position of winter causes the sun to be lower in the sky, shorter days, longer shadow, lower intensity of sunlight.

GLE: 6.2.C.f Relate the axial tilt and the orbital position to the intensity of sunlight falling on the Earth in different SEASONS. Click on the links below. MSNBC-Reason for the Seasons Why do we have Seasons-2?

GLE: 6.2.C.f Relate the axial tilt and the orbital position to the intensity of sunlight falling on the Earth in different SEASONS. Click on the links below. The Reasons for the Seasons Applet: The Reasons for the Seasons Zoom Seasons reasons Seasons and moon phases game The reasons for the seasons is the tilt of the Earth toward or away from the Sun and the orbit or revolution of the Earth around the Sun. Both reasons cause a variation or difference in the amount of sunlight hitting the Earth. When the Earth is tilted toward the Sun in the northern hemisphere = Summer: the sunlight and heat are more direct and it is warmer. When the Earth is tilted away from the sun in the northern hemisphere = Winter, the sunlight is less direct and it is colder. Positions

GLE: 6.2.A.e: Describe how the Sun is never directly overhead (Position) when observed from North America: Can the Sun ever be observed directly overhead in the Northern hemisphere? No, the Sun can never be observed directly overhead in the northern hemisphere because the Earth is tilted on its axis. The Sun can be observed directly overhead at the equator (and 23.5 degrees below and 23.5 above the equator). The Sun’s angle of separation is less than 90 degrees in the northern hemisphere.

Positions GLE: 6.2.A.b: Describe the pattern that can be observed in the changes in number of hours of visible sunlight, and the time and location (position) of sunrise and sunset, throughout the year. GLE: 6.2.A.d: Describe how, in winter, the Sun appears to rise in the (positions) Southeast and set in the Southwest, accounting for a relatively short day length, and, in summer, the Sun appears to rise in the Northeast and set in the Northwest, accounting for a relatively long day length There are more hours of visible sunlight in the summer. In the summer, the sun rises in the northeast and sets in the northwest. The sun rises earlier and sets later in the summer accounting for a longer day. There is less hours of visible sunlight in the winter. In the winter, the sun sets in the southeast and sets in the southwest. The sun rises later and sets earlier in the winter accounting for a shorter day.

Earth Supports Life GLE: 6.1.B.a: Describe how the Earth’s placement in the solar system is favorable to sustain life (i.e. atmosphere, temperature and distance from the Sun). Why is the atmosphere important for all living things on Earth? It…. Protects life from UV rays (or harmful rays from sun) Has Oxygen to breath Has CO2 for plants Traps heat from sun to maintain a certain temperature Helps protect us by burning up objects falling from space Has Weather and Climate (rain necessary for life) What is needed for life on Earth. Click on the link

GRAVITY GLE 6.2.D.a: Describe how the Earth’s gravity pulls any object on or near the Earth toward it (including natural and artificial satellites). How Gravity Works Gravity Circular Orbit

GRAVITY GLE 6.2.D.b: Describe how the planets’ gravitational pull keeps satellites and moons in orbit around them. Why doesn’t the moon fall down? Click on this link Satellites orbiting the Earth. Click on this link

GRAVITY THE SUN-EARTH L2 POINTTHE SUN-EARTH L2 POINT Planet HOP GLE: 6.2.D.c: Describe how the Sun’s gravitational pull holds the Earth and other planets in their orbits

Download ppt "Earth in Space. The Universe Big Idea 1: The Universe has observable properties and structure Big Idea 2: Regular and predictable motions of objects in."

Similar presentations