Presentation is loading. Please wait.

Presentation is loading. Please wait.

Элтех – официальный представитель в России Элтех представляет «Теория и технологии» SAW Filter Vectron International Наличие на складе Техническая поддержка.

Similar presentations


Presentation on theme: "Элтех – официальный представитель в России Элтех представляет «Теория и технологии» SAW Filter Vectron International Наличие на складе Техническая поддержка."— Presentation transcript:

1 Элтех – официальный представитель в России Элтех представляет «Теория и технологии» SAW Filter Vectron International Наличие на складе Техническая поддержка Прямые поставки

2 | | (812)  Filter Theory and SAW Filter  Technical Features and Limitation  Driving Mode (Single-ended, Balance-ended)  Impedance Matching Network  Power Durability (Maximum Input Power)  Package Technology and Portfolio  SAW Theory and Design Principles  Production Process Flow

3 | | (812) frequency Attenuation /dB ] Filtering: 2.Minimum change to desired signal 1.Suppression of unwanted signals Incoming signal: Multiple Transmitters Outgoing signal = Incoming Signal * Filtering Function IN OUT Filter Theory Principle

4 | | (812) SAW RF Filter GSM Receiver Advantage of SAW Filters 1.Small Size 2.Cost competitive 3.SMD package, suitable for mass production

5 | | (812) SAW Technical Parameters Close In Rejection Attenuation Center Frequency Insertion LossRipple (Passband Variation) Passband Bandwidth Stopband 0 Transition Bandwidth  Key Parameters in Spec  Center Frequency  Insertion Attenuation (Loss)  Passband Bandwidth  Passband Variation (Ripple)  Transition bandwidth  Rejection Attenuation  Temperature Range  Group Delay  Driving Mode* (single end/balance end)  Power Durability*  Rules of Thumb  Higher Frequency = Smaller Chip  Higher Rejection = Longer Chip  Longer Chip = Worse GDR  Higher Loss = Better Ripple

6 | | (812) Vectron SAW Filter Product Family 10 Frequency MHz Passband Bandwidth 0, SAW Filter Product Frequency Range Frequency (MHz) Relative Bandwidth Insertion Loss (dB) Precision High Loss 30 to 50010% to 40%>10 Loss Reduced50 to % to 40%5 to 10 Low Loss50 to % to 7%< MHz 2.5GHz Precision High Loss Loss Reduced Low Loss Category

7 | | (812)  Filter Theory and SAW Filter  Technical Features and Limitation  Driving Mode (Single-ended, Balance-ended)  Impedance Matching Network  Power Durability (Maximum Input Power)  Package Technology and Portfolio  SAW Theory and Design Principles  Production Process Flow

8 Single EndBalanced End 1 2 Reflection s ii Transmission s ji Z0Z0 Z Reflection s ii Transmission s ji Z0Z0 Z 0 0 Z Z ZZ S ii    Reflection VSWR (Voltage standing wave ratio) Driving Mode Definition

9 | | (812) Impedance Matching Network MixerMatchingIF FilterAmplifierMatching Z out, mixer Z in, filter Z out, filter Z in, amplifier LO signal RF signalIF signal Power matching condition ( * : complex conjugate):  Z out, mixer = Z in, filter * Z out, filter = Z in, amplifier *  impedance matching by reactive (L, C) network Transfer function S 21 Reflection function S ii

10 1. Test Board 2. Application Note 3. S-Parameters Impedance Matching Support

11 | | (812) Power Durability Limitation Maximum Input power handling: 20dBm

12 Packaging Technology Glue: flexible contact to package Glue+backside treatment: bulk waves suppression (reflections at bottom side) Absorber - cancel inter track cross talk - cancel reflections at chip edge

13 Package Portfolio HTCC / Multilayer package Minimum size: 3mm*3mm Chip scale package (Flip Chip) size:2.5mm*2mm

14 | | (812)  Filter Theory and SAW Filter  Technical Features and Limitation  Driving Mode (Single-ended, Balance-ended)  Impedance Matching Network  Power Durability (Maximum Input Power)  Package Technology and Portfolio  SAW Theory and Design Principles  Production Process Flow

15 | | (812) ) Bulk Acoustic Waves: Crystals Monolithic Crystal Filters µm /2 Electrodes Piezo-Electric Effect: electrical energy  mechanical (acoustic) energy 1.)Surface Acoustic Waves: Filters Resonators A B p Electrodes Piezo-Electric Effect

16 | | (812) SAW Filter Theory IN OUT “= ” Electric  acoustic wave “”“” Acoustic  electric wave h(t) t-T T h(t) t

17 | | (812) SAW Wafer Material Type Temperature Stability Wide/Low Narrow/high High Low Quartz LiTaO3 LiNbO3 SiO2 on LiTaO3 Bandwidth/Loss Piezo-Electric Effect Materials

18 SAW Design Principles DesignDescriptionProCon 1PrecisionTransverse filtershigh steepness and rejectionhigh loss 2SPUDTSingle Phase Unidirectional Transducerlower losssmall bandwidth 3SFITSlanted Finger Interdigital Transducerwide bandwidthlong optimization 4LCRFLongitudinally coupled resonator filterslow loss, wide bandwidthshoulder in upper stop band 5TCRFTransversely coupled resonator filterslow loss, good rejectionsmall bandwidth 6IEFImpedance element filtersvery low loss, high steepnesswake rejection

19 | | (812)  Filter Theory and SAW Filter  Technical Features and Limitation  Driving Mode (Single-ended, Balance-ended)  Impedance Matching Network  Power Durability (Maximum Input Power)  Package Technology and Portfolio  SAW Theory and Design Principles  Production Process Flow

20 Wafer cleaning Resist deposition Exposure Developing Cleaning Metallization Lift off Wafer test Wafer Fab Process Front End Operation Process

21 Die bonding Wire bonding Aging Sealing Leak test Final test Tape&Reel Marking Marking Back End Process

22 | | (812)

23  Piezoelectricity  Pressure Generates Change  Electrical Field Generates Deformation  Rayleigh Wave SAW Filter Theory

24 SAW Filter Key Parameters Abbr.Description F0F0 Center Frequency IL Insertion Loss ARAmplitude Ripple BW p Pass Band Bandwidth BTTransition Bandwidth BW R Pass Band Bandwidth REJ.Sidelobe Rejection GDRGroup Delay Ripple ØRPhase Ripple Stop Band

25 Transversal Filter Features Frequency: 10MHz MHz Insertion attenuation: 13dB - 30dB Relative Bandwidth: 0.5% - 20% Pros Wide BW High Steepness (Low Shape Factor) Very Good Rejection Cons Large Size High Loss Impedance Matching Required

26 SPUDT Filters: Basics Acoustic reflections Excitation  Additional degrees of freedom for signal shaping  weighting of excitation and reflection  Unidirectional performance:  Loss reduction !

27 | | (812)  f c = MHz  BW = MHz  IL = 4.8 dB  Poor skirt steepness  Time Domain:  | a=-70dB) = 10µs SPUDT – Not Optimized  MHz  MHz  4.0 dB  Significantly improved skirts  25µs

28 Unidirectional Slanted Finger Interdigital Transducer USFIT - SAW Features Frequency (70MHz - 700MHz) Loss (6dB - 13dB) Wide Band (2% - 7%) Pros Low Loss w\ Wide BW Cons Upper Frequency Limit Long Optimization Parallel Connection of Narrow Band Low Loss Filters

29 Features  Low loss  3dB  Wide frequency range: ~50MHz… 2.7GHz  Balun functionality and impedance transformation can be included  Bandwidth limited by material constants (typical  4%) Reflector Transducer  Trapping of acoustic energy in SAW structure  loss reduction  Electrical / acoustic coupling between resonant circuits  filter passband Resonator Filters

30 Resonator Filters: RF Performance Longitudinally Coupled Resonator Filter (LCRF)

31 | | (812)  Basic building block: One-port resonator  Usage of transverse modes (waveguide) in transversely coupled resonators  different resonance frequencies (Eigenmodes): symmetric and antisymmetric modes  Two-pole transfer characteristics Transversely Coupled Resonator Filter OUT IN —1st mode —2nd mode —transfer function

32 | | (812) Impedance Element Filter Equivalent circuit model f s : (Series) Resonance frequency (Z  0: „short circuit“) f a : Anti-resonance (parallel resonance) frequency (Y = 1/Z  0: „open circuit“) f a - f s : Pole-zero distance (~ to substrate‘s coupling coefficient k 2 )  relative bandwidth Z s1 Z p1 Z s2 Z s.. Z sN Z pN Z p.. LsLs RsRs CpCp CsCs PZD  2 PZD S 21


Download ppt "Элтех – официальный представитель в России Элтех представляет «Теория и технологии» SAW Filter Vectron International Наличие на складе Техническая поддержка."

Similar presentations


Ads by Google