Presentation is loading. Please wait.

Presentation is loading. Please wait.

Galileo’s telescope. Refractor or Reflector Refraction Refraction is the bending of light when it passes from one substance into another Your eye uses.

Similar presentations


Presentation on theme: "Galileo’s telescope. Refractor or Reflector Refraction Refraction is the bending of light when it passes from one substance into another Your eye uses."— Presentation transcript:

1 Galileo’s telescope

2 Refractor or Reflector

3 Refraction Refraction is the bending of light when it passes from one substance into another Your eye uses refraction to focus light

4 Refraction makes a pencil appear to be bent when placed in water. When light passes through a glass slab it first refracts towards the normal then away from the normal.

5 Example: Refraction at Sunset Sun appears distorted at sunset because of how light bends in Earth’s atmosphere

6 Refraction telescope images The main lens in a refracting telescope is called the primary lens (or the objective lens). This lens is a part of the telescope and is fixed.

7 Problems with refractors. Light of differing frequency travel at different speeds in glass. This results in a spectrum from a prism and leads to chromatic aberration in lenses. Large achromatic lenses are expensive. Lenses must be supported at the edges. Large lenses sag in the middle under their own weight. Long focal length= long tubes. Costly mounts and domes.

8 Chromatic Aberration

9 Achromatic Lenses

10 Yerkes Observatory Williams Bay Wis. Worlds largest at 40 inches in diameter 63ft long

11 Reflectors Most large telescopes are reflectors. Isaac Newton presented a reflecting telescope to the Royal Society in Mirrors avoid chromatic aberration. Objective mirror instead of an objective lens. Early reflectors were made of polished metal alloys. Tarnished rapidly dimming images.

12 Reflectors method for depositing silver on glass. Most telescopes became reflectors Still tarnished, normal glass changes shape with temperature changes 1940’s technique for casting Pyrex glass and aluminum coatings (more durable) Now Pyrex or Fused Quartz Palomar 200 inch mirror took 11 years to build and required 5 tons of glass.

13 Reflecting telescope images Light in a reflecting telescope does not have to pass through glass at all. The main mirror in a reflecting telescope is called the primary mirror (objective mirror).

14 Images are inverted

15 Types of reflectors

16 Prime or Cassegrain The Cassegrain focus is at the bottom and requires a secondary mirror. Prime focus is often used in photography. It places the observer in a cage.

17 Cassegrain Telescopes 41” Telescope 18” Telescope

18 Earl of Rosse’s mid –nineteenth century telescope Observers stood at the prime focus.

19 Newtonian A Newtonian focus is inconvenient for large telescopes.

20 SCT

21 Telescope Mounts The choice of mount depends on the telescopes main function and size. Good optics are useless if you can’t control the telescope. Good control is useless if the optics are poor.

22 Alt-Azimuth Mounts

23 Equatorial Mounts

24 200in

25 Russian 6m First large telescope to use alt-azimuth mount. A key move to the new generation of telescopes. For a given aperture this permits a cheaper lighter structure in a more compact dome.

26 Telescope Rating Characteristics Powers of a telescope Light gathering power Resolving power Magnifying power.

27 Light Gather Power HighLow Resolution HighLow Magnification HighLow

28 Light Gathering Power A telescope is a light bucket. Like a bucket catching rain the diameter is the determining factor in hiw much light gets caught. Area= π r 2 The large the radius, diameter, the greater the area. Bigger is better. The more light you collect the farther out you see.

29 Resolving Power … ability of a telescope to see fine detail. Defined as the angular distance between two objects that are barely visible as separate. Due to the wave nature of light magnified images have diffraction fringes.

30 Diffraction Limits The edge of a telescope acts as slits causing diffraction patterns. These are only seen at the highest magnification for a telescope.

31 Overlap Closely spaced objects begin to overlap, becoming indistinguishable.

32 Increasing resolving power. The smaller the number the better the resolution.

33 Angular resolution = 0.25 * Resolution formula For visible wavelengths in the middle of the visible spectrum “ α” ≈ Note aperture is in the denominator. Large D smaller resolution. Bigger telescope is better.

34 Magnifying Power Usually the big sell. Least important. It can be changed. M = Magnification is calculated by the focal length of the objective divided by the focal length of the eyepiece. To Increase magnification just change to a shorter focal length eyepiece.

35 Maximum Magnification As magnification of an instrument is increased the image will be dimmer. As a rule of thumb the maximum magnification of a telescope can be found by M max = 20(X/cm) *D(cm)

36 F5_4 Focal Length of a Lens The focal length of a lens or mirror is the distance from the center of the lens to the image formed from an object placed at a great distance.

37 Observing Problems: Light Pollution Many of the most interesting objects are dim. Bright skies wash out the images. The darker the sky the better.

38

39

40 Seeing

41 To reduce the effects of the atmosphere observatories are placed at high elevations and in regions where the air is dry.

42 Paranal Observatory ESO The best seeing is from remote, high and dry locations.

43 Telescopes New Generation telescopes use advances in technology to correct images for bad seeing conditions.

44 New Generation Telescopes Large mirrors had to be made thick to avoid sagging. A mirror can be supported from the back. Traditional telescopes were big, heavy, and expensive. Control devices had to be massive too. High speed computers have helped to reduce costs and improve performance. Computer control makes alt-azimuth mounts usable. Computer control makes it possible to control the shape of thin mirrors rapidly. This reduces the costs of making the mirror, smaller mounts and allows for…

45 Thin floppy mirrors Mirrors are backed by movable pistons able to change the shape of the mirror quickly under computer control. B.One of the Keck hexagonal mirror segments. Thin mirrors are lighter require less support and they change temperature faster (less trouble with convection currents at surface)

46 Floppy Mirrors

47 Nordic 2.6 M Canary Islands 1989 First large instrument whose dome and primary mirror shape are continually adjusted for the sharpest possible image.

48 Gemini 8.1 m mirrors Rapid control of mirror shapes makes it possible to correct some distortions caused by poor seeing. Real time mirror control achieved by 120 actuators under the mirror and 60 around the edge. Right: The Gemini mirrors have adaptive optics

49 Adaptive optics AO allows this 1.5m telescope to reach 0.1” resolution

50 Adaptive Optics Corrected Image

51 Adaptive Optics Rapidly changing the shape of a telescope’s mirror compensates for some of the effects of turbulence Without adaptive opticsWith adaptive optics

52

53 Pluto and Charon by adaptive optics

54 Star by AO The central star is blocked out to show a disk of matter..

55 Inside Gemini

56 Gemini open The air inside and outside the dome must be the same temperature so the dome is opened shortly before sunset.

57 Inside looking out

58 Mauna Kea Observatory Hawaii At 4 km altitude sky is clear. Keck 10 m mirror

59 Keck Keck (I and II) have 9.8 m segmented mirrors[ 36 of them, 90cm on each side]. A major advance in telescope design.

60 Keck I Segmented Mirror

61 Segmented Mirrors

62 Moons by Keck

63 Segmented Mirror

64 Texas Hobby-Eberly Telescope, HET: 9.1 effective aperture mirror is made from 91 spherically segmented mirrors forming a hexagon 11 m x 10 m.

65 Plans Giant Telescopes are proposed. The California Extremely Large Telescope would be a 30 m telescope featuring 1080 segments 40cm on a side.

66 More plans XLT Extremely large telescope

67 The mirror

68 Enormously large telescope

69 OWL Overwhelmingly Large Telescope

70 Optical Interferometry Combining signals requires control of signal path lengths to a fraction of the wave length of the e-m radiation being combined. Only radio waves could be used until recently. The resulting image has the resolution of the distance between mirrors.

71 Very Large Telescope Array Paranal Observatory at Atacama Chile Four 8.2 m reflecting telescopes. Used together have the effective area of a 16 m.

72 VLT

73 Large Binocular Telescope

74 Binoc mirror Spinning oven makes mirror closer to end shape, requires less finish grinding.

75 Giant Magellan Telescope

76 CCD (charge coupled device) Images CCDs can detect both dim and bright objects in the same exposure, are more sensitive the a photographic plate, and can be read directly into a computer.

77 CCDs,2 CCDs can not only image but give relative intensity data that was once required a photometer. This leads to interesting contour plots and the use of false color images.

78 Imaging Astronomical detectors generally record only one color of light at a time Several images must be combined to make full-color pictures

79 Imaging Astronomical detectors can record forms of light our eyes can’t see Color is sometimes used to represent different energies of nonvisible light

80 Early 90s

81 Spectra Spectrograph: Most use a grating instead of a prism. Details about the intensity at specific wavelengths gives a wealth of information.

82

83

84 The Earth’s atmosphere is mostly transparent for visible light and radio waves. For that reason, there are two major types of telescopes: Common Optical Telescopes Radio Telescopes Earth’s Atmosphere

85 The other window Radio ? Why don’t we see in the radio region?

86 Components of Radio telescope because you would have to have huge eyes. Remember the resolution formula ?

87 Radio telescopes Still bigger is better “α” = 0.25 To get the same resolution radio telescopes must be huge.

88 Green Bank 100 m telescope Largest steerable radio telescope in the world.

89 300 m Radio Telescope Arecibo Puerto Rico

90 Very Large Array Radio interferometry increases the resolution, by combining signals. VLA consists of 27 dishes has the resolution of a 22 mile diameter radio telescope. Soccoro NM

91 Radio images

92 Very Long Baseline Array VLBA Combines electronically signals from Hawaii and the Virgin Islands. This gives the resolution of an Earth sized telescope

93 IR Infrared Telescopes Top:Longer wave length light doesn’t see the smog particles. Dust doesn’t block IR as easily in space either.

94 NASA 3 m Infrared Telescope Water absorbs IR IR Telescopes must be at high elevations, in the mountains, on balloons or in space. Still only the near infrared is visible under even the thin atmosphere.

95 NASA’s Great Observatories

96 Figure 6.22

97 Hubble launched April Visible light and UV ( Shuttle Discovery) Compton Gamma-Ray Observatory.(Shuttle Atlantis). April 1991 to June 2000 (lost gyroscope) Fermi Gamma-Ray Observatory (formerly GLAST) 2008 replaces Compton Swift Has gamma ray detectors, as well as x- ray and visible light telescopes. Chandra X-ray Observatory July 1999 (Shuttle Columbia) Space Infrared Telescope Facility (SIRTF), now called the Spitzer Space Telescope

98 SIRTF Space Infrared Telescope Facility [Spitzer]

99 SIRTF, Spitzer Space Telescope Was launched by Delta rocket first expected in mid April Saved a lot of money, but required a redesign. Was to have been launched by a shuttle.

100 IRAS Infrared Astronomy Satellite surveyed cooler gas and dust.

101 Dust gets in the way

102 Resolution

103 Orbit

104 Chandra Xray Telescope

105 Gamma ray telescopes Design

106 X ray mirrors From Chandra Ed at Harvard

107 Extreme Ultraviolet Explorer

108 F5-23a Hubble

109 F5-23bMars by Hubble

110 James Webb Space Telescope – 2013… I mean 2018 launch…


Download ppt "Galileo’s telescope. Refractor or Reflector Refraction Refraction is the bending of light when it passes from one substance into another Your eye uses."

Similar presentations


Ads by Google