Download presentation

Presentation is loading. Please wait.

Published byLorena Lovelady Modified about 1 year ago

1
Molecular Geometry and Bonding Theory Chapter 9 AP Chemistry

2
Molecular Geometry Molecular Geometry- general shape of a molecule as determined by the relative position of the nuclei. The geometry and size of a molecule helps to determine it’s chemical behavior. VSEPR- Valence-Shell-Electron-Pair- Repulsion model- predicts geometry based upon e’s around the central atom.

3
Principles of the VSEPR theory Electrons are kept as far away from one another as possible – minimizing e pair repulsions Electron pairs are considered as being bonding or non-bonding (lone pairs) A multiple bond counts as a single bonding pair Electron pair geometry is described by the regions of e’s around the central atom Molecular geometry is a consequence of electron pair geometry.

4
Predicting Structures VSEPR Derive the Lewis Structure to the form AXmEn A = central atom X = atoms bonded to the central atom E = lone pairs of e’s on the central atom M = # of bonded atoms N = # of lone pairs

5
Electron Geometry Linear Example Electron and Molecular Geometry Linear Bond angles 180 Sp Hybrid Non-polar

6
More Examples AX 2

7
Electron Geom. Trigonal Planar Molecular Geom. Trigonal Planar bond angles exactly 120 non-polar Bent bond angles aprox 120 polar molecule Sp2 hybridized

8
Electron Geom.Trigonal Planar Molecular Geometry: AX3 (3BP or 2BP + 1LP) ex. 3bp NO 3- <>

9
Examples Cont. 3bp BF 3 <> <>

10
Examples Cont. 2bp + 1 lp Ex O 3 (ozone)

11
Electron Geom. Tetrahedral Molecular Geom. Tetrahedral bond angles exactly non-polar molecule, Trigonal pyramidal bond angles aprox polar molecule, Bent bond angles aprox polar molecule Sp3 hybridized

12
Molecular Geometry: AX4 [4BP or (3BP + 1LP) or (2BP + 2LP)] Electron Geometry: AX4 Tetrahedral

13
Example BrO 3 F, Perbromyl fluoride

14
Molecular Geometry: AX3E1 Trigonal Pyramidal

15
Example NF 3, Nitrogen trifluoride

16
Molecular Geometry: AX2E2 Bent/Angular

17
Example H2O, Water, ClOF, Chlorosyl fluoride

18
Electron Geom. Trigonal Bypyramidal Mol. Geom. Trigonal Bypyramidal – bond angles ax. exactly 108 deg. eq. exactly 120 deg. Non-polar, See-Saw – bond angles ax. aprox. 108 deg. eq. aprox. 120 deg. Polar, T- shaped - bond angles ax. aprox. 108 deg. No –eq, Linear – bond angle exactly 180 non-polar. All sp3d hybridized

19
Mol geo. Trigonal bipramidal AX5 [5BP or (4BP + 1 LP) or (3BP + 2LP) or (2BP + 3LP)] 5bp

20
Example PCl5(gas phase), Phosphorous pentachloride

21
Molecular Geometry: AX4E1 See-saw Example IF2O2-

22
Molecular Geometry: AX3E2 T-structure Example ClF3

23
Molecular Geometry: AX2E3 Linear Examole XeF2

24
Electron Geometry Octahedrial Mol geo. Octahedral – bond angle exactly 90 - non-polar, square pyramidal – bond angle aprox 90- polar, square planar- bond angle exactly 90 non-polar Sp3d2 hybridized

25
Molecular Geometry: AX6 Octahedral Example SF6

26
Molecular Geometry: AX4E1 Pyramidal Planar Example XeOF4

27
Molecular Geometry: AX4E2 Square Planar Example XeF4

28
Bond Angles Non-bonding pairs of e’s take up more space (att. by one nucli) than bonded e pairs Double and triple bonds take up more space than single bonds (more e’s) Volume occupied lone pairs > triple bonds > double bonds > single bonds

29
Forces Non-bonding pairs exert repulsive forces on adjacent e pairs and compress angles Multiple bonds also exert repulsive forces and compress angles

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google