Presentation is loading. Please wait.

# Developing a Hiring System OK, Enough Assessing: Who Do We Hire??!!

## Presentation on theme: "Developing a Hiring System OK, Enough Assessing: Who Do We Hire??!!"— Presentation transcript:

Developing a Hiring System OK, Enough Assessing: Who Do We Hire??!!

Summary of Performance-Based Hiring  Understand performance expectations  List attributes that predict performance  Match attributes with selection tools  Choose/develop each tool effectively  Make performance-based decisions

List of Critical Attributes

Performance Attributes Matrix

Who Do You Hire??

Common Decision-Making Errors  Switching to non-performance factors  Succumbing to the “Tyranny of the Best”  Reverting to “intuition” or “gut feel”

Information Overload!!  Leads to: – Reverting to gut instincts – Mental Gymnastics

Combining Information to Make Good Decisions  “Mechanical” methods are superior to “Judgment” approaches – Multiple Regression – Multiple Cutoff – Multiple Hurdle – Profile Matching – High-Impact Hiring approach

Multiple Regression Approach  Predicted Job perf = a + b 1 x 1 + b 2 x 2 + b 3 x 3 – x = predictors; b = optimal weight  Issues: – Compensatory: assumes high scores on one predictor compensate for low scores on another – Assumes linear relationship between predictor scores and job performance (i.e., “more is better”)

Multiple Cutoff Approach  Sets minimum scores on each predictor  Issues – Assumes non-linear relationship between predictors and job performance – Assumes predictors are non-compensatory – How do you set the cutoff scores?

How Do You Set Cut Scores?  Expert Judgment  Average scores of current employees – Good employees for profile matching – Minimally satisfactory for cutoff models  Empirical: linear regression

Multiple Cutoff Approach  Sets minimum scores on each predictor  Issues – Assumes non-linear relationship between predictors and job performance – Assumes predictors are non-compensatory – How do you set the cutoff scores? – If applicant fails first cutoff, why continue?

Test 1Test 2 Interview Background Finalist Decision Reject Multiple Hurdle Model Fail Pass

Multiple Hurdle Model  Multiple Cutoff, but with sequential use of predictors – If applicant passes first hurdle, moves on to the next  May reduce costs, but also increases time

Profile Matching Approach  Emphasizes “ideal” level of KSA – e.g., too little attention to detail may produce sloppy work; too much may represent compulsiveness  Issues – Non-compensatory – Small errors in profile can add up to big mistake in overall score  Little evidence that it works better

How Do You Compare Finalists?  Multiple Regression approach –Y (predicted performance) score based on formula  Cutoff/Hurdle approach – Eliminate those with scores below cutoffs – Then use regression (or other formula) approach  Profile Matching – Smallest difference score is best – ∑ (Ideal-Applicant) across all attributes  In any case, each finalist has an overall score

Making Finalist Decisions  Top-Down Strategy – Maximizes efficiency, but also likely to create adverse impact if CA tests are used  Banding Strategy – Creates “bands” of scores that are statistically equivalent (based on reliability) – Then hire from within bands either randomly or based on other factors (inc. diversity)

Applicant Total Scores 94 93 89 88 87 86 81 80 79 78 72 70 69 67

Limitations of Traditional Approach  “Big Business” Model – Large samples that allow use of statistical analysis – Resources to use experts for cutoff scores, etc. – Assumption that you’re hiring lots of people from even larger applicant pools

A More Practical Approach  Rate each attribute on each tool – Desirable – Acceptable – Unacceptable  Develop a composite rating for each attribute – Combining scores from multiple assessors – Combining scores across different tools – A “judgmental synthesis” of data  Use composite ratings to make final decisions

Improving Ratings 1. Use intuitive rating system  Unacceptable – Did not demonstrate levels of attribute that would predict acceptable performance  Acceptable – Demonstrated levels that would predict acceptable performance  Desirable – Demonstrated levels that would predict exceptional performance

Categorical Decision Approach 1. Eliminate applicants with unacceptable qualifications 2. Then hire candidates with as many desirable ratings as possible 3. Finally, hire as needed from applicants with “acceptable” ratings – Optional: “weight” attributes by importance

Sample Decision Table

Using the Decision Table 1: More Positions than Applicants

Using the Decision Table 2: More Applicants than Positions

Numerical Decision Approach 1. Eliminate applicants with unacceptable qualifications 2. Convert ratings to a common scale – Obtained score/maximum possible score 3. Weight by importance of attribute and measure to develop composite score

Numerical Decision Approach

Summary: Decision-Making  Focus on critical requirements  Focus on performance attribute ratings – Not overall evaluations of applicant or tool  Eliminate candidates with unacceptable composite ratings on any critical attribute  Then choose those who are most qualified: – Make offers first to candidates with highest numbers of desirable ratings

Download ppt "Developing a Hiring System OK, Enough Assessing: Who Do We Hire??!!"

Similar presentations

Ads by Google