Download presentation

Presentation is loading. Please wait.

1
**Conservation of Energy**

Coin A is thrown up in the air at a speed v from an height of h. Coin B is thrown down at the same speed from the same height. Which coin hits the ground at the highest speed, neglecting air resistance? Coin A B. Coin B C. They hit the ground at the same speed. D. It cannot be determined.

2
**Conservation of Energy**

Coin A is thrown up in the air at a speed v from an height of h. Coin B is thrown down at the same speed from the same height. Which coin hits the ground at the highest speed, neglecting air resistance? Coin A B. Coin B C. They hit the ground at the same speed. D. It cannot be determined.

3
**Conservation of Energy**

Coin A is thrown up in the air at a speed v from an height of h. Coin B is thrown down at the same speed from the same height. Which coin hits the ground at the highest speed, allowing for air resistance? Coin A B. Coin B C. They hit the ground at the same speed. D. It cannot be determined.

4
**Conservation of Energy**

Coin A is thrown up in the air at a speed v from an height of h. Coin B is thrown down at the same speed from the same height. Which coin hits the ground at the highest speed, allowing for air resistance? Coin A B. Coin B C. They hit the ground at the same speed. D. It cannot be determined.

5
**Efficiency and Energy Loss**

3U Physics

6
Efficiency Efficiency is the ratio of useful energy or work output to the total energy or work input:

7
Efficiency Efficiency is the ratio of useful energy or work output to the total energy or work input (written as a percent):

8
Efficiency Example 1 A model rocket engine contains explosives storing 3500 J of chemical potential energy. Calculate how efficiently the rocket transforms stored chemical energy into gravitational potential energy if the 0.50 kg rocket is propelled to a height of 1.0 x 102 m.

9
Efficiency Example 1 A model rocket engine contains explosives storing 3500 J of chemical potential energy. Calculate how efficiently the rocket transforms stored chemical energy into gravitational potential energy if the 0.50 kg rocket is propelled to a height of 1.0 x 102 m.

10
Efficiency Example 1 A model rocket engine contains explosives storing 3500 J of chemical potential energy. Calculate how efficiently the rocket transforms stored chemical energy into gravitational potential energy if the 0.50 kg rocket is propelled to a height of 1.0 x 102 m.

11
Efficiency Example 2 A 120-W motor accelerates a 5.0-kg mass from rest to a speed of 4.0 m/s in 2.0 s. Calculate the motor’s efficiency.

12
Efficiency Example 2 A 120-W motor accelerates a 5.0-kg mass from rest to a speed of 4.0 m/s in 2.0 s. Calculate the motor’s efficiency.

13
Efficiency Example 2 A 120-W motor accelerates a 5.0-kg mass from rest to a speed of 4.0 m/s in 2.0 s. Calculate the motor’s efficiency.

14
**Efficiency, alternately**

Efficiency is also the ratio of useful power output to the power input:

15
**Efficiency Example 2, alternately**

A 120-W motor accelerates a 5.0-kg mass from rest to a speed of 4.0 m/s in 2.0 s. Calculate the motor’s efficiency.

16
**But what about conservation?**

Given that energy should be conserved, where does the energy go?

17
**But what about conservation?**

Given that energy should be conserved, where does the energy go? The input energy is only “lost” in that it has been converted to non-useful forms: heat energy, sound energy, etc. by forces such as friction.

18
**The 3 Laws of Thermodynamics**

(according to British scientist C.P. Snow)

19
**The 3 Laws of Thermodynamics**

You can’t win.

20
**The 3 Laws of Thermodynamics**

You can’t win. You can’t break even.

21
**The 3 Laws of Thermodynamics**

You can’t win. You can’t break even. You can’t even get out of the game.

22
You can’t win. You can’t get something (energy) for nothing; energy is always conserved.

23
You can’t break even. You can’t return to the state at which you started because some energy is converted to non-useful forms.

24
You can’t break even. You can’t return to the state at which you started because some energy is converted to non-useful forms. The entropy (disorder) of a system always increases.

25
**You can’t get out of the game.**

Absolute zero is the only state in which no energy is ever lost – and absolute zero is unattainable.

26
More Practice Homework Set 8: Power and Efficiency

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google