Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jueves 1 de marzo de 2012 Clase 13 de 1:30 horas. Van 19:30 horas.

Similar presentations


Presentation on theme: "Jueves 1 de marzo de 2012 Clase 13 de 1:30 horas. Van 19:30 horas."— Presentation transcript:

1 Jueves 1 de marzo de 2012 Clase 13 de 1:30 horas. Van 19:30 horas

2

3 Advanced Quantum Theory Paul Roman.Addison-Wesley, ISBN Quantum Mechanics, Concepts and Applications N. Zettili; Wiley 2001 Quantum mechanics. Second edition V.G. Thankappan. New Age, Quantum Physics F. Scheck. Springer, 2007 Essential Quantum Mechanics Gary E. Bowman, 2008, Oxford University Press Introduction to Quantum Mechanics D. Griffiths. Prentice Hall ISBN Principles of quantum mechanics. Second edition R. Shankar

4 I. Introducción 1.1 La ecuación de Schrödinger 1.2 Problemas unidimensionales La partícula libre Pozos Barreras y tuneleo El oscilador armónico II. El formalismo de la Mecánica Cuántica III. Descripción cuántica del átomo. IV. Interacción semiclásica átomo-radiación.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 A complete set of commuting operators is defined to be a maximal set of independent commuting Hermitean operators. Any state can be uniquely expanded in terms of the eigenfunctions of a complete set of commuting Hermitean operators. What exactly constitutes a complete set of operators depends upon the physical space, i.e. whether it is one-dimensional, two-dimensional or three-dimensional, and whether there is an intrinsic space associated with the particle such as spin. If the set is not complete then one can add another independent operator to the set until the set becomes complete. A state which corresponds to an eigenfunction of a complete set of commuting operators is uniquely determined and is completely defined without any remaining arbitrariness. By successively adding operators to a set of independent commuting operators, one has reduced the degeneracy until the simultaneous eigenvalues are non-degenerate and the set of operators is complete Quantum Mechanics I Peter S. Riseborough April 19, 2011

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125


Download ppt "Jueves 1 de marzo de 2012 Clase 13 de 1:30 horas. Van 19:30 horas."

Similar presentations


Ads by Google