Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bridging the gap: Qualitative & Quantitative methodologies Jo Ferrie Interim Director of Graduate Training School of Social & Political Sciences.

Similar presentations

Presentation on theme: "Bridging the gap: Qualitative & Quantitative methodologies Jo Ferrie Interim Director of Graduate Training School of Social & Political Sciences."— Presentation transcript:

1 Bridging the gap: Qualitative & Quantitative methodologies Jo Ferrie Interim Director of Graduate Training School of Social & Political Sciences

2 Venues and moodle codes SSS1 –Lecture 12-3pm Mondays (lecture 12-2.15ish (mandatory), then a revision session (optional)) –Macgregor Building on the Western Infirmary Site(Main lecture theatre) –Tutorials will be assigned to you at the first lecture –Moodle code – sss1 Qualitative Methods –Lecture 5:30-6:30 Tuesdays –Adam Smith Lecture Theatre Room 1115 –Tutorials begin the week after (week beginning: 30 th Sept), groups will be assigned to you at the first lecture –Moodle code – qual2012

3 Overview Qualitative & Quantitative approaches to social science research – general reflections Quantitative research methods –Use of statistical data in the media –Mixed methods

4 Why so important? Unsettling the way in which you go about ‘doing’ your research; Challenging disciplinary conventions; Potential value of mixed method approaches Appreciation of other types of research /approaches

5 Search for truth … “Each society has its regime of truth, its ‘general politics’ of truth: that is, the types of discourse which it accepts and makes function as true; the mechanisms and instances which enable one to distinguish true and false statements, the means by which each is sanctioned; the techniques and procedures accorded value in the acquisition of truth; the status of those who are charged with saying what counts as true” (Foucault 1980, 131). –Foucault M. 1980. Power/knowledge: Selected interviews and other writings 1972–77, ed. C Gordon. New York: Pantheon.

6 Qualitative or Quantitative approaches to research? “Lies, damned lies, and statistics” ‘Physics envy’ – purported prestige of the ‘hard’ sciences Rigour/reliability – qualitative/subjective (?) etc. “Scientists are not and cannot be concerned with the individual case. They seek laws, systematic relations, explanations of phenomena. And their results are always statistical.” (Kerlinger 1979: 270) “The degree to which the observations can be quantified (translated into numbers) is often a good index of the maturity of a science” (Mussen, Conger & Kagan, 1977: 13) Understanding human nature vs. understanding the physical world(?) Mixed methods – best of both worlds?

7 5 minute discussion Watch the excerpt from Moneyball –Reflect on the different styles that are brought to play – subjective judgement vs. statistics etc. and associated claims to ‘truth’ –Reflect on the way in which individuals react to different claims to insight, ‘truth’ etc.

8 Moneyball 2 minute scene The baseball team has limited funds The team’s general manager (Billy Beane) is trying to approach the issue of which players to buy from a different angle – one based on statistics/number- crunching. Challenges the usual way in which things have been done i.e. judgement based on subjective factors, experience, ‘feel’ etc.

9 With your neighbour discuss: –Your preference for Qualitative and/or Quantitative research methodologies Indeed, do you think about social science research methodologies in this way? –Relative strengths of Qualitative & Quantitative research methodologies

10 Let’s dwell on statistics... can we find truth in statistics? Yes But … we need to know how to read them Drinking beer reduces risk of coronary heart disease Eating oily fish reduces risk of stroke Eating five pieces of fruit and vegetables increases your health rating –Really? –How can we be sure who to trust? –Which truth is the real truth?

11 Making the case for quantitative methods Ontological –Assumption that the social world is in fact a mathematical problem that can be solved to produce universal laws Epistemological –Research data should be quantitative in order to afford comparisons across studies and theories Technical –Statistical techniques are power tools for handling large amounts of data Rhetorical (informing/influencing the audience) –Hard quantified facts are more convincing to the public – more trustworthy

12 Positivism Application of the methods of the natural sciences to the study of social reality –Only knowledge confirmed by the senses is knowledge –Positivism aimed to provide the laws of society and the possibility of socially engineering society –Laws are assessed via hypothesis testing –‘Value free’ and ‘objective’ conduct –“The real power of man to modify phenomena at will can only result from a knowledge of their natural laws” (Comte, 1974: 142). Comte, A. (1974) The Essential Comte: Selections from Course de Philosophie Positive (S. Andreski, Ed.) New York: Barnes & Noble

13 Main ‘requirements’ of quantitative methods Requires a greater degree of objectivity compared with qualitative methods –Findings will be scrutinised –Findings should be replicable Usually deductive as it relies on relationship between theory and research in order to develop a hypothesis that is then proved or disproved by data Figure: The process of reduction, Bryman, 2008: 10 1. Theory 2. Hypothesis 3. Data Collection 4. Findings 5. Hypotheses confirmed or rejected

14 How statistics are used daily? Examples from the world of sport Descriptive statistics often used to record sporting achievement Tables include simple counts basic calculations e.g. goal difference Replicated across all walks of life exam league tables unemployment counts Not scary!

15 Do statistics always tell the whole story? (thanks to Cat Nixon MRC) Using the London 2012 Olympic medal table Olympic medal table example of “count” variable Records number of medals won by colour Tells us that the USA was most successful at the Olympics But what if the medal table isn’t telling the whole story? Is it fair to just “count” medals? What if we compared how countries did based upon population size and GDP? Do you think the USA would still have come first in the table? Let’s have a look shall we….

16 Olympic table normally ordered by medals won and then sorted by Gold Medals For simplicity let’s order by total number of medals won Can see that USA is most successful team

17 Medals per 100,000 population = (no. medals won/population size)100000 Medals per $1bn GDP = no. medals won/GDP CountryNo. medals won Official Rank Population size GDP ($bn) USA1041309,349,00015094 China8821,338,300,0007298 Jamaica12212,702,00015 Grenada158=104,0000.8 Bahamas158=64,6006 Botswana1692,007,00018 Medals per 100,000 population Medals per $1bn GDP 0.0340.007 0.012 0.4440.800 0.9611.250 1.5480.170 0.0500.060

18 Logarithmic adjustment for GDP and weighted by medal colour Logarithmic adjustment for population size and weighted by medal colour

19 So what does it mean? How data are recorded and analysed affect how results are interpreted “Counting” shows us that the USA were most successful at London 2012 But when you consider other factors a different picture emerges: adjusting for GDP means that the USA would have come 66 th adjusting for population size means that the USA would have come 47 th Grenada could be considered most successful country at Olympics! Why does this matter? As social scientists we try to explain differences in behaviours, outcomes etc by looking at the differences between and within groups, not just by counting the number of times an outcome occurs.

20 Do you always believe what you read? Yet another example from the world of sport Statistics are often our main source of information on a topic Data are easily manipulated to form arguments Data are often misreported within the wider press - Creates “knowledge-base” that becomes “fact-base” Having a basic understanding of both qualitative and quantitative methods allows us to move beyond merely accepting data and ask questions about the validity of evidence

21 What the newspapers say….

22 But what do the data say?

23 AllStatePrivate Total1187543 Gold433013 Silver291712 Bronze462818 Number of athletes who won a medal at Olympic Games by education type 118 medals won by 113 athletes If we know what schools the athletes attended then we can calculate %age of medals won by each group Is there evidence to support the claims made by the press?

24 Is it really that simple? There appears to b e evidence to support the statement that 4 in 10 medallists educated at private schools BUT there are approx. 9,500,000 school children in the UK and only 6.5% (617500) of which attend private schools What if we scaled the results to reflect this by creating a “medals won per 10000 children” figure? Do you think you would be more likely to win a medal at a private or state school?

25 Medals won No. educated in 2012 Medals won per 10000 children Private43617,5000.7 State758,882,5000.08 Medals won per 10000 children = (medals won/no. educated in 2012)10000 Results show that the number of medals won per 10000 children were higher for those in private education Dividing 0.7 by 0.08 we can conclude that based upon population size, being educated in a private school makes you nearly 9 times more likely to win a medal!

26 A real world example of mixed methods PhD study funded by Chief Scientist Office for Scotland Aims of study are to: –explore why sexual health of young people looked after by the state is worse than that of general population –identify how looked after young people learn about sexual health and use services –establish what role carers can play in improving outcomes for looked after young people Mixed methods approach –Secondary data analysis of nationally representative sexual health dataset –Systematic literature review –In-depth and semi-structured interviews with looked after young people, carers and social workers Sexual health dataset and interviews mainly focused on sexual health, but data exists on wider health risk behaviours Going to present data on substance use

27 Who are looked after children? (Cat Nixon again, MRC) Young people aged 0-18 who are looked after by the state due to difficulties within the family Reasons for being looked after include: –physical, emotional and sexual abuse –parental ill-health –child requires specialist care for medical reasons –parental substance use –persistent truanting from school –involvement in youth justice system Small population but associated problems more likely –1.4% of 0-18 year olds in Scotland are looked after each year by local authorities –significantly more likely to be excluded from school, –higher rate of mental health problems –care history associated with homelessness, early parenthood and involvement in sex-working

28 Prevalence of health risk behaviours in children looked after by state and those living with at least one biological parent

29 Looked after young people are significantly more likely to: –get drunk at least once a week –smoke cigarettes –smoke cannabis once a week Literature suggests that the adoption of these behaviours is associated with: –deprivation –low levels of parental supervision –disengagement from education –having ‘risky’ peers All of which are seen in higher rates amongst looked after young people Adjusting for the effects of these in statistical models explains difference in behaviour between looked after young people and rest of population But what it doesn’t tell us is why they use substances at a higher rate

30 Qualitative interviews Interviews conducted with 33 young people aged 14-23 between August and December 2011 Combination of in-depth and semi-structured interviewing used to accommodate differences in educational, emotional and communication differences Thematic analysis

31 Reasons for drug and alcohol use Young people often exposed to drugs and alcohol by other young people they were living with Drugs and alcohol used to: –protect against “bullying” from other young people –“fit in” with other young people –to escape from the past –to block out being a looked after child

32 at first it was cannabis, poppers, aerosols, all the kind of stupit stuff but then I started going out with a few of the people when I moved into (the unit) and you started going out at the weekends and there was eccies flying aboot and there was cocaine flying aboot and speed, I mean I was only 12 year old and I was taking them all just to show I wasnae a daft wee lassie… I was just trying to act the big hard brass Andrea which I was at one point but that’s what everyone thought but I was a vulnerable wee lassie on the inside who just wanted to go out and drink and dae drugs tae just try to block it all oot”. Andrea, aged 16

33 “I’d just take anything, anything we could get our hands on. We’d smoke it all and snort it all or whatever and you used to feel really good, but then the next day you’d just think ‘why am I doing this?’, but it was really, I just think it was getting away from everything that made it worthwhile.” Sophie aged 14

Download ppt "Bridging the gap: Qualitative & Quantitative methodologies Jo Ferrie Interim Director of Graduate Training School of Social & Political Sciences."

Similar presentations

Ads by Google