Download presentation

Presentation is loading. Please wait.

Published byCasey Crooks Modified about 1 year ago

1
CS 206 Introduction to Computer Science II 03 / 04 / 2009 Instructor: Michael Eckmann

2
Michael Eckmann - Skidmore College - CS 206 - Spring 2009 Today’s Topics Questions? Comments? Queue Stack

3
Queues and Stacks A queue is a data structure that has the following characteristics – It is linear – Uses FIFO (first in, first out) processing Queue operations – Enqueue – add an item to the rear of the queue – Dequeue – remove an item from the front of the queue – Empty – returns true if the queue is empty What's significant about a queue is that there are no insert in anywhere or remove from anywhere in the queue. The only place to add something to the queue is the rear, and the only place to remove something from the queue is the front.

4
Queues and Stacks A stack is a data structure that has the following characteristics – It is linear – Uses LIFO (last in, first out) processing Stack operations – Push – add an item to the top of the stack – Pop – remove an item from the top of the stack – Empty – returns true if the stack is empty – Peek – retrieve information about the item on top of the stack without removing it The only allowable ways to put an item into and to get an item from the stack is via push and pop. There are no insert in anywhere or remove from anywhere in the stack. What if there was no peek? Is it redundant --- could a series of the existing operations achieve the same functionality.

5
Queues and Stacks Can anyone think of real world examples that are naturally modeled by queues? Can anyone think of a real world example that is naturally modeled by a stack? Let's see visual representations of a queue and a stack on the board.

6
Queues and Stacks Can anyone think of real world examples that are naturally modeled by queues? – Line of people at grocery store checkout – Line of airplanes waiting for takeoff Can anyone think of a real world example that is naturally modeled by a stack? – Plates at a salad bar A customer takes the top plate (pop) When new plates come out, they are “pushed” to the top of the stack. – Why is this example not a queue?

7
Queues and Stacks Recursive method calls A new call to the method causes it's local data and other state information (where in the method does it return to, etc.) to be pushed onto the stack The method calls finish in reverse order, so when a method call ends, it's local data & state is popped off the stack –You've seen me write information about method calls on the board in stack format.

8
Queues and Stacks Could we implement a Queue with – a linked list – an array Could we implement a Stack with – a linked list – an array

9
Queues and Stacks Let's implement a stack with an array –what will be our instance variables? Let's implement a queue with an array –what will be our instance variables?

10
Queues and Stacks Let's implement a queue with an array –what will be our instance variables?

11
Queues and Stacks Let's implement a queue with an array –what will be our instance variables? –if we want to keep a fixed sized array and we don't want to keep shifting the values around in the array we can use a scheme that stores an index to the front, an index to the rear –if we want the front to be the index that we would dequeue from and rear to be the index of the last element (so that we would enqueue to rear+1) then we should do the following: –front and rear being the same value means we have 1 element in the queue, so for an empty queue we would want front and rear start off at 0 and -1 –when enqueue first one, front stays 0 and rear becomes 0 –also, when rear goes off the end of the array we can wrap it around to 0, only if front is not still 0. Make sense?

12
Queues and Stacks Let's implement a queue with an array –how would we tell if the queue is full? when front is 0 and rear is maxindex or when...

13
Queues and Stacks Applications of stacks –balancing symbols. e.g. curly braces (left { ) and (right }) compilers need to figure out if there are the same number of lefts as there are rights. a stack is handy for this how?

14
Queues and Stacks Applications of stacks –balancing symbols. e.g. curly braces (left { ) and (right }) compilers need to figure out if there are the same number of lefts as there are rights. a stack is handy for this –when see a left curly, push it on the stack –when see a right curly try to pop the stack --- there should be a left curly to pop, otherwise it's an error –when get to the end of the source code, if the stack is empty (and we haven't run into the error above) then the curly braces are balanced.

15
Queues and Stacks Applications of stacks –postfix expressions (reverse Polish notation) infix (what we're used to) is like: 1.07*3.85 + 14.05 + 1.07*8.75 postfix is like: 1.07, 8.75, *, 14.05, +, 1.07, 3.85, *, + infix result requires us to do the multiplies first and then store the intermediate values and then to the 2 adds. postfix operates in the following way: –when see a number, push it –when see an operator, perform it to the two top numbers on the stack and push the result final result in our example is: 27.532

16
Queues and Stacks Applications of stacks –converting from infix (with only +, *, (, ) ) to postfix expressions infix example (assume normal precedence): a + b*c + ( d*e + f ) * g postfix for our example could be: a b c * + d e * f + g * + –let's look at the algorithm to do this using a stack

17
Queues and Stacks converting infix to postfix –when an operand (a, b, c, etc.) is read write it to the output –if we see a ) then we pop the stack and write to output until a left paren is on top of the stack --- at which point we pop the left paren but do not output it. –when a + or * is read, examine the top of the stack – if top is of lower precedence than the one just read, then push the operator –when a + or * is read – if top is of the stack does not have lower precedence than the one just read, then pop the operator and write to output –when a ( is read push it –Let's try this algorithm with our example: infix: a + b*c + ( d*e + f ) * g postfix (expected output): a b c * + d e * f + g * +

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google