Download presentation

Presentation is loading. Please wait.

Published byAlayna Hernandez Modified over 2 years ago

1
Taras V. Gerya 1, James A.D. Connolly 1, David A. Yuen 2 1 ETH– Zurich 2 University of Minnesota, Minneapolis

2
= (P ressure, T emperature, C omposition, M ineralogy ) H = H (P ressure, T emperature, C omposition, M ineralogy ) Gibbs free energy minimization (Gerya et al., 2001, 2004, Connolly & Petrini, 2002, Vasiliev et al., 2004)

3
Cp(DT/Dt) = (k T/ x)/ x + (k T/ z)/ z + Qp + Q shear + Q radioactive Qp = (DP/Dt)[1- ( H/ P) T ]Cp = ( H/ T) P Latent heating is implemented via effective heat capacity ( Cp ) and effective adiabatic heating ( Qp ) computed numerically from the enthalpy and density maps Lagrangian temperature equation standard thermodynamic relations D(ln )/Dt + div(v) = 0 Lagrangian continuity equation for compressible flow Volumetric effects of phase transformations are taken into account in both the momentum and the continuity equations

4
дP/дx = (P 2 -P 1 )/ x P 1 P 2 xx Finite differences T Combination of finite-differences, on staggered grid, and marker-in-cell technique Method of numerical solution original 2-D and 3-D single- & multi-processor C-codes I2, I3, I2VIS, I2ELVIS, I2IOMP, I3MG (Gerya et al., 2000; Gerya & Yuen, 2003) Marker technique Staggered grid

5
The software fit advances in hardware technology - Work stations: n 10 4 nodes, n 10 7 markers Supercomputers: n 10 7 nodes, n 10 10 markers in visualization technology - ultra-high spatial resolution for very large numerical models The software accounts for variable tectonic environment phase transformations visco-elasto-plastic rheology erosion/sedimentation processes 10 Accretion wedge km Subducting plate Sea water Air ALL-IN-ONE TOOLBOX

7
10 million markers Gerya et al. (2006) Mixed and unmixed cold plumes (with slab fluids signatures) (with crustal melts)

8
10 billion markers original view zoom: 3 zoom: 10 zoom: 30 zoom: 100 zoom: 300 Internal structure of mixed plumes to 1 m scale

9
zoom: 30 Do we see cold plumes? Obata (2000) 1 km

10
Gerya et al. (2006)Zhao et al. (1992) Numerical tomographic model Seismic tomography Do we see cold plumes?

14
100 o C 200 o C 300 o C 400 o C

15
100 o C 200 o C 300 o C 400 o C

16
100 o C 200 o C 300 o C 400 o C

17
100 o C 200 o C 300 o C 400 o C

18
100 o C 200 o C 300 o C 400 o C

19
100 o C 200 o C 300 o C 400 o C

20
100 o C 200 o C 300 o C 400 o C

21
100 o C 200 o C 300 o C 400 o C

22
100 o C 200 o C 300 o C 400 o C

23
100 o C 200 o C 300 o C 400 o C

24
100 o C 200 o C 300 o C 400 o C

25
100 o C 200 o C 300 o C 400 o C

26
100 o C 200 o C 300 o C 400 o C

27
100 o C 200 o C 300 o C 400 o C

28
100 o C 200 o C 300 o C 400 o C

29
100 o C 200 o C 300 o C 400 o C

30
100 o C 200 o C 300 o C 400 o C

31
100 o C 200 o C 300 o C 400 o C

32
100 o C 200 o C 300 o C 400 o C The End

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google