Download presentation

Presentation is loading. Please wait.

Published byAlayna Hernandez Modified over 2 years ago

1
Taras V. Gerya 1, James A.D. Connolly 1, David A. Yuen 2 1 ETH– Zurich 2 University of Minnesota, Minneapolis

2
= (P ressure, T emperature, C omposition, M ineralogy ) H = H (P ressure, T emperature, C omposition, M ineralogy ) Gibbs free energy minimization (Gerya et al., 2001, 2004, Connolly & Petrini, 2002, Vasiliev et al., 2004)

3
Cp(DT/Dt) = (k T/ x)/ x + (k T/ z)/ z + Qp + Q shear + Q radioactive Qp = (DP/Dt)[1- ( H/ P) T ]Cp = ( H/ T) P Latent heating is implemented via effective heat capacity ( Cp ) and effective adiabatic heating ( Qp ) computed numerically from the enthalpy and density maps Lagrangian temperature equation standard thermodynamic relations D(ln )/Dt + div(v) = 0 Lagrangian continuity equation for compressible flow Volumetric effects of phase transformations are taken into account in both the momentum and the continuity equations

4
дP/дx = (P 2 -P 1 )/ x P 1 P 2 xx Finite differences T Combination of finite-differences, on staggered grid, and marker-in-cell technique Method of numerical solution original 2-D and 3-D single- & multi-processor C-codes I2, I3, I2VIS, I2ELVIS, I2IOMP, I3MG (Gerya et al., 2000; Gerya & Yuen, 2003) Marker technique Staggered grid

5
The software fit advances in hardware technology - Work stations: n 10 4 nodes, n 10 7 markers Supercomputers: n 10 7 nodes, n 10 10 markers in visualization technology - ultra-high spatial resolution for very large numerical models The software accounts for variable tectonic environment phase transformations visco-elasto-plastic rheology erosion/sedimentation processes 10 Accretion wedge km Subducting plate Sea water Air ALL-IN-ONE TOOLBOX

7
10 million markers Gerya et al. (2006) Mixed and unmixed cold plumes (with slab fluids signatures) (with crustal melts)

8
10 billion markers original view zoom: 3 zoom: 10 zoom: 30 zoom: 100 zoom: 300 Internal structure of mixed plumes to 1 m scale

9
zoom: 30 Do we see cold plumes? Obata (2000) 1 km

10
Gerya et al. (2006)Zhao et al. (1992) Numerical tomographic model Seismic tomography Do we see cold plumes?

14
100 o C 200 o C 300 o C 400 o C

15
100 o C 200 o C 300 o C 400 o C

16
100 o C 200 o C 300 o C 400 o C

17
100 o C 200 o C 300 o C 400 o C

18
100 o C 200 o C 300 o C 400 o C

19
100 o C 200 o C 300 o C 400 o C

20
100 o C 200 o C 300 o C 400 o C

21
100 o C 200 o C 300 o C 400 o C

22
100 o C 200 o C 300 o C 400 o C

23
100 o C 200 o C 300 o C 400 o C

24
100 o C 200 o C 300 o C 400 o C

25
100 o C 200 o C 300 o C 400 o C

26
100 o C 200 o C 300 o C 400 o C

27
100 o C 200 o C 300 o C 400 o C

28
100 o C 200 o C 300 o C 400 o C

29
100 o C 200 o C 300 o C 400 o C

30
100 o C 200 o C 300 o C 400 o C

31
100 o C 200 o C 300 o C 400 o C

32
100 o C 200 o C 300 o C 400 o C The End

Similar presentations

OK

DEEP EARTHQUAKES SPATIAL DISTRIBUTION: NUMERICAL MODELING OF STRESSES WITHIN THE SUBDUCTING LITHOSPHERE Prasanna Gunawardana Advisor - Dr. Gabriele Morra.

DEEP EARTHQUAKES SPATIAL DISTRIBUTION: NUMERICAL MODELING OF STRESSES WITHIN THE SUBDUCTING LITHOSPHERE Prasanna Gunawardana Advisor - Dr. Gabriele Morra.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on social media addiction Ppt on different types of computer softwares downloads Ppt on project management process Ppt on congruence of triangles class 8 Ppt on natural numbers meaning Ppt on interest rate risk management Ppt on review of related literature on research Ppt on nuclear family and joint family in india Ppt on index numbers pdf Ppt on relations and functions for class 11th economics