Presentation is loading. Please wait.

Presentation is loading. Please wait.

PRISM: High-Capacity Networks that Augment Campus’ General Utility Production Infrastructure Philip Papadopoulos, PhD. Calit2 and SDSC.

Similar presentations


Presentation on theme: "PRISM: High-Capacity Networks that Augment Campus’ General Utility Production Infrastructure Philip Papadopoulos, PhD. Calit2 and SDSC."— Presentation transcript:

1 PRISM: High-Capacity Networks that Augment Campus’ General Utility Production Infrastructure Philip Papadopoulos, PhD. Calit2 and SDSC

2 Some Perspective on 100Gbps DDR3 1600MHz Memory DIMM = 12.8GB/s (102.4Gbps) Triton Compute nodes (24GB/node) enough memory capacity to source 100Gbps for ~2 seconds High-performance Flash 500MB/sec, about 24 Flash Drives to fill 100Gbps 250GB each (6TB total) ~ 8 100Gbps Data Oasis High-Performance Parallel File SDSC (all 10GbE) – 64 72TB each, 2GB/sec Disk-to-network – 4.6PB (102 hours/ Gbps)  100Gbps is really big from some perspectives, not so from others.

3 Terminating 100Gbps You land your campus, where does it go from there? What kinds of devices need to be connected?

4 Some history at UCSD: A Decade of Leading-edge Research Networks ITR: The OptIPuter, $15M – Smarr, PI. Papadopoulos, Ellisman UCSD Co-PIs. DeFanti, Leigh UIC Co-PIs – “If the network ceases to become a bottleneck how does that change the design of distributed programs” 2004, Quartzite: MRI:Development of Quartzite, a Campus-wide, Terabit-Class, Field- Programmable, Hybrid Switching Instrument for Comparative Studies, $1.48M – Papadopoulos, PI. Smarr, Fainman, Ford, Co-PIs – “Make the network real for OptIPuter experiments”

5 ½ Mile SIO SDSC CRCA Phys. Sci - Keck SOM JSOE Preuss 6 th College SDSC Annex Node M Earth Sciences SDSC Medicine Engineering High School To CENIC and NLR Collocation Source: Phil Papadopoulos, SDSC; Greg Hidley, Cal-(IT) 2 OptIPuter Network(2005) SDSC Annex Juniper T Tbps Backplane Bandwidth 20X Chiaro Estara 6.4 Tbps Backplane Bandwidth Dedicated Fibers Between Sites Link Linux Clusters

6 Technology Motion Chiaro (out of business) – Replaced capability with Force10 E1200 – Moved physical center of network to Atkinson Hall (Calit2) Juniper T320 (Retired) – Upgraded by Campus/SDSC with pair of MX960s Endpoints replaced/upgraded over time at all sites Quartzite Introduced DWDM, all-optical, and Wavelength switching What was constant? – Fiber plant (how we utilized it moved over time) What was growing – Bigger Data at an increasing number of labs. Instrument capacity.

7 Next Generation (NSF Award# OCI ) NSF Campus Cyberinfrastructure Program (CC-NIE), $500K, 1/1/2013 start date, Papadopoulos. PI. Smarr Co-PI Replace Quartzite Core – Packet switch only (hybrid not required) – 10GbE, 40GbE, 100GbE Capability – “Small” switch – 11.5Tbit/s full-bisection, 1+Tbit/sec terminated in phase0 Expansion to more sites on/off campus Widen the freeway between SDSC and Calit2 – Access to SDSC/XSEDE resources – Campus has committed to 100Gb/s Internet2 connection. Prism is the natural termination network.

8 Expanding Network Reach for Big Data Users Phil Papadopoulos, SDSC, Calit2, PI

9 Prism Core Switch – Arista Networks Next Gen 7504 : What 11.5Tb/s looks like (< 3KW) This is the Prism core switch (Delivery in March 2013). Will have 10GbE (48 ports), 40GbE (36 ports), and 100GbE short-reach (2 ports). 2 Slots empty for expansion.

10 Physical Connections A variety of Transceiver Tech – Copper 10Gbit and 40Gbit for in machine room – SR, LR SFP+ 10GbE, in building and cross-campus – 10GbE DWDM 40KM + Passive Multiplexers Fiber conservation. Re-use of Optics for Quartzite Requires media conversion (DWDM XFPs) VERY reliable. No multiplexer failures in 5+ years. 1 Transceiver – 10GbE CWDM + Passive multiplexers SFP+ form factors (direct plug into 7504) – 40GbE LR4, QSFP+. (internally is CWDM). Choice of transceiver depends on where we are going, how much bandwidth is needed, and the connection point – E.g., Calit2 – SDSC: 12 x 10GbE (2 x LR + 10 DWDM), 2 Fiber pair. SDSC landing is 10GbE only (today).

11 What is our Rationale in Prism Big Data Labs have particular burst bandwidth needs – At UCSD. Number of labs today is roughly Campus backbone is 10GbE/20GbE and serves 50,000 users on a daily basis with ~80K IP addresses – One data burst data transfer on Prism would saturate the campus backbone – Protect the campus network from big data freeway users. – Provide massive network capability in a cost-effective manner Software defined networking (SDN) is emerging technology to better handle configuration – SDN via OpenFlow will be supported on Prism – Combine ability to experiment while reducing risk of complete network disruption Easily Bridge to Identified networks – Prism  UCSD Production Network (20GbE bridge == Campus Backbone) – Prism  XSEDE Resources (Direct connect in SDSC 7508s) – Prism  Off-campus, high-capacity (e.g. ESNET, 100GbE Internet2, NLR) – Prism  Biotech Mesa surrounding UCSD.

12 Prism Core Optiputer/Quartzite Enabled SDSC to Build Low-Cost High-Performance Storage 120Gbps

13 Really Pushing Data from Storage (what 800+ Gbps/sec looks like) 485Gb/s350Gb/s+ Saturation test: IOR testing through Lustre: 835 Gb/s = 104GB/sec OASIS designed to NOT be an Island. This is why we chose 10GbE instead of IB Papadopoulos set performance target of 100+GB/sec for Gordon Track 2 Proposal (submitted in 2010). Most people at SDSC thought it was “crazy” MLAG Jun 2012

14 Summary Big Data + High Capacity inexpensive switching + High Throughput Instruments + Significant Computing and Data Analysis Capacity all form a “perfect storm” – OptIPuter predicted this in 2002, Quartzite amplified that prediction in We are now here. You have to work on multiple ends of the problem – Devices, Networks, Cost$ Key insight: Recognize the fundamental differences between scaling challenges (e.g. Campus 50K users vs. Prism’s 500 Users (the 1%)) Build for Burst capacity


Download ppt "PRISM: High-Capacity Networks that Augment Campus’ General Utility Production Infrastructure Philip Papadopoulos, PhD. Calit2 and SDSC."

Similar presentations


Ads by Google