Download presentation

1
**Fourier Transform Periodicity of Fourier series**

Limiting behaviour of Fourier series Limiting form of Fourier series Fourier transform pairs Existence of Fourier transform „Signal Theory” Zdzisław Papir

2
**Periodicity of Fourier series**

sawtooth signal time t period T = 1 „Signal Theory” Zdzisław Papir

3
**Limiting behaviour of Fourier series**

„Signal Theory” Zdzisław Papir x(t) time t -T/2 xT(t) Periodic extension of a signal window xT(t) through Fourier series +T/2

4
**Limiting behaviour of Fourier series**

„Signal Theory” Zdzisław Papir

5
**Limiting behaviour of Fourier series**

„Signal Theory” Zdzisław Papir

6
**Limiting behaviour of Fourier series**

„Signal Theory” Zdzisław Papir

7
**Limiting behaviour of Fourier series**

amplitude of the 1st spectrum line of an exponential puls Fourier series window „Signal Theory” Zdzisław Papir

8
**Limiting behaviour of Fourier series**

Fourier series window T amplitude spectrum – exponential pulse „Signal Theory” Zdzisław Papir

9
**Limiting behaviour of Fourier series**

amplitude spectrum – exponential pulse Fourier series window 3T „Signal Theory” Zdzisław Papir

10
**Limiting behaviour of Fourier series**

amplitude spectrum – exponential pulse Fourier series window 10T „Signal Theory” Zdzisław Papir

11
**Limiting behaviour of Fourier series**

amplitude spectrum – exponential pulse Fourier series window 100T „Signal Theory” Zdzisław Papir

12
**Limiting behaviour of Fourier series**

Squeezing Fourier series coefficients in FREQUENCY: Squeezing Fourier series coefficients in AMPLITUDE: „Signal Theory” Zdzisław Papir

13
Riemann integral a b x f(x) „Signal Theory” Zdzisław Papir

14
**Limiting form of Fourier series**

Fourier series coefficients: FORWARD FOURIER TRANSFORM: „Signal Theory” Zdzisław Papir

15
**Limiting form of Fourier series**

INVERSE FOURIER TRANSFORM: „Signal Theory” Zdzisław Papir

16
**Fourier Integral Theorem**

„Signal Theory” Zdzisław Papir

17
**Fourier integral theorem**

Fourier transform Fourier integral theorem Forward Fourier transform „Signal Theory” Zdzisław Papir

18
**Inverse Fourier transform**

„Signal Theory” Zdzisław Papir

19
**Fourier transform pairs**

FORWARD INVERSE TRANSFORM PAIRS „Signal Theory” Zdzisław Papir

20
**Fourier transform pairs**

FORWARD FOURIER TRANSFORM: „Signal Theory” Zdzisław Papir

21
**Fourier transform pairs**

time t FOURIER TRANSFORM: „Signal Theory” Zdzisław Papir

22
**Fourier transform pairs**

1 -T/2 T/2 frequency f FOURIER TRANSFORM: „Signal Theory” Zdzisław Papir

23
**Fourier transform pairs**

frequency f FOURIER TRANSFORM: „Signal Theory” Zdzisław Papir

24
**Existence of Fourier transform**

Dirichlet conditions are necessary for Fourier transform existence. Signal x(t) must have only a finite number of maxima and minima, as well as a finite number of discontinuities over the entire range [–, + ]. Signal x(t) is also allowed to be unbounded provided that it is absolutely integrable: „Signal Theory” Zdzisław Papir

25
Summary Fourier series is a spectral decomposition of periodic signal or produces a periodic extension of signal window. Fourier transform is a tool for spectral decomposition of nonperiodic signals. Fourier transform is a limiting case of Fourier series with signal window being extended up to infinity. Dirichlet conditions are necessary for Fourier transform existence. In engineering applications it is commonly assumed that signals of limited energy are Fourier transformable. „Signal Theory” Zdzisław Papir

Similar presentations

OK

ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Eigenfunctions Fourier Series of CT Signals Trigonometric Fourier Series Dirichlet.

ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Eigenfunctions Fourier Series of CT Signals Trigonometric Fourier Series Dirichlet.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google