Download presentation

Presentation is loading. Please wait.

1
**The University of Tokyo**

Microscopic origin and universality classes of the three-body parameter The University of Tokyo Pascal Naidon Shimpei Endo Masahito Ueda

2
**3 particles (bosons or distinguishable) with resonant two-body interactions**

single-channel two-body interaction no three-body interaction

3
**The Efimov 3-body parameter**

Zero-range condition with 𝑎→∞ − 1 𝑅 2 Efimov attraction R x 𝑅 2 = ( 𝑥 2 + 𝑦 2 + 𝑧 2 ) Hyperradius The Efimov effect (1970) y z Parameters describing particles at low energy Scattering length a (2-body parameter) 1/𝑎 − - 𝜅 2 𝐸 1/𝑎 𝑎 Three-body parameter trimer Λ −1 3-body parameter dimer

4
**The Efimov 3-body parameter**

Zero-range condition with 𝑎→∞ − 1 𝑅 2 Efimov attraction R x 𝑅 2 = ( 𝑥 2 + 𝑦 2 + 𝑧 2 ) Hyperradius The Efimov effect (1970) y z Parameters describing particles at low energy Scattering length a (2-body parameter) 1/𝑎 − 𝐸 1/𝑎 - 𝜅 2 22.72 𝑎 Three-body parameter trimer dimer Λ −1 3-body parameter

5
**Universality for atoms**

triplet scatt. length 𝑎 [ 𝑎 0 ] 𝑟 vdW [ 𝑎 0 ] 4He 7Li 6Li 39K 23Na 87Rb 85Rb 133Cs Microscopic determination? no universality of the scattering length r short-range details − 1 𝑟 6 van der Waals Two-body potential Effective three-body potential Hyperradius R short-range details − 1 𝑅 2 Efimov 𝑎 − [ 𝑎 0 ] 𝑎 − ≈−10 𝑟 𝑣𝑑𝑊 𝑟 vdW [ 𝑎 0 ] universality of the 3-body parameter

6
**Three-body with van der Waals interactions**

Phys. Rev. Lett (2012) J. Wang, J. D’Incao, B. Esry, C. Greene Lennard-Jones potentials supporting n = 1, 2, 3, s-wave bound states 𝑎 − ≈−11 𝑟 𝑣𝑑𝑊 − 1 𝑅 2 Efimov Hyperradius R Three-body repulsion at 𝑅≈2 𝑟 𝑣𝑑𝑊

7
**Interpretation: two-body correlation**

𝜓 𝑘 =sin (𝑘𝑟 − 𝛿 𝑘 ) Asymptotic behaviour 𝜓 𝑘 𝑉(𝑟) Strong depletion Interatomic separation r Resonance 𝒂→∞ 𝜓 𝑘 𝑉(𝑟) 𝑟 0 ≈ 𝑟 𝑣𝑑𝑊 ∼ 𝑟 𝑒 = 0 ∞ 𝜓 𝑟 2 − 𝜓 0 𝑟 2 𝑑𝑟

8
**Interpretation: two-body correlation**

Kinetic energy cost due to deformation Excluded configurations induced deformation squeezed equilateral Excluded configurations deformation 〈𝛼〉 Efimov elongated 𝑟 0

9
**Confirmation 1: pair correlation model**

FModel = FEfimov x j(r12) j(r23) j(r31) (hyperangular wave function) (product of pair correlations) 3-body potential 𝑈 𝑅 = 𝜆 𝑅 𝑑 cos 𝜃 𝑑𝛼 𝜕Φ 𝜕𝑅 2 Hyperradius R [ 𝑟 0 ] Energy E [ 𝑟 0 −2 ] Pair model (for Lennard-Jones two-body interactions) Exact Efimov attraction

10
**Confirmation 2: separable model**

Reproduces the low-energy 2-body physics Scattering length Effective range Last bound state …. 𝑉=𝜉 𝜒 〈𝜒| Parameterised to reproduce exactly the two-body correlation at zero energy. 𝜒 𝑞 =1−𝑞 0 ∞ 𝜓 0 𝑟 − 𝜓 0 (𝑟) sin 𝑞𝑟 𝑑𝑟 1/𝑎 − 𝜉=4𝜋 1 𝑎 − 2 𝜋 0 ∞ 𝜒 𝑞 2 𝑑𝑞 −1 - 𝜅 2

11
**Confirmation 2: separable model**

𝑎 − 𝑟 𝑣𝑑𝑊 𝑎 − =−10.86(1) 𝑟 𝑣𝑑𝑊 n 𝑉=𝜉 𝜒 〈𝜒| Parameterised to reproduce exactly the two-body correlation at zero energy. Hyperradius R Energy Exact Pair model Separable model Hyperradius R Integrated probability

12
**Confirmation 2: separable model**

𝑉=𝜉 𝜒 〈𝜒| Parameterised to reproduce exactly the two-body correlation at zero energy. Other potentials Potential 𝒂 − 𝜿 Yukawa -5.73 0.414 Exponential -10.7 0.216 Gaussian -4.27 0.486 Morse ( 𝑟 0 =1) -12.3 0.180 Morse ( 𝑟 0 =2) -16.4 0.131 Pöschl-Teller (𝛼=1) -6.02 0.367 at most 10% deviation -6.55 -11.0 -4.47 -12.6 -16.3 -6.23 0.204 -0.366 0.472 0.173 0.128 0.350 Separable model Exact calculations S. Moszkowski, S. Fleck, A. Krikeb, L. Theuÿl, J.-M.Richard, and K. Varga, Phys. Rev. A 62 , (2000).

13
**Summary universal two-body correlation ∼ 𝑟 𝑒 effective range**

three-body deformation three-body repulsion three-body parameter ∼ 𝑟 𝑒 effective range

14
**Two-body correlation universality classes**

∝− 1 𝑟 𝑛 (𝑛>3) Power-law tails Faster than Power-law tails Step function correlation limit Universal correlation 𝜓 0 𝑟 =Γ 𝑛−1 𝑛−2 𝑟/ 𝑟 𝑛 1/2 𝐽 1/(𝑛−2) (2 𝑟/ 𝑟 𝑛 −(𝑛−2)/2 ) Probability density Van der Waals 0.0 1.0 2.0 3.0 4.0 Interparticle distance ( 𝑟 𝑣𝑑𝑊 )

15
Separable model 3-body parameter in units of the two-body effective range (= size of two-body correlation) Nuclear physics Atomic physics 𝜅=− 𝑟 𝑒 2 −1 𝜅=− 𝑟 𝑒 2 −1 Binding wave number at unitarity 𝜅=− 𝑟 𝑒 2 −1 ? Number of two-body bound states

16
Summary The 3-body parameter is (mostly) determined by the low-energy 2-body correlation. Reason: 2-body correlation induces a deformation of the 3-body system. Consequences: the 3-body parameter is on the order of the effective range. has different universal values for distinct classes of interaction P. Naidon, S. Endo, M. Ueda, PRA 90, (2014) P. Naidon, S. Endo, M. Ueda, PRL 112, (2014)

17
**Obrigado pela sua attenção!**

18
**Separable model 𝑉=𝜉 𝜒 〈𝜒|**

Parameterised to reproduce exactly the two-body correlation at zero energy. … 𝑎 − 𝑟 𝑣𝑑𝑊

Similar presentations

OK

NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,

NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Best ppt on earth day by alex Ppt on production process of asian paints Ppt on role of it in indian railways Ppt on power system stability study Ppt on non biodegradable waste example Ppt on standing order act score Ppt on section 186 of companies act 2013 Ppt on object recognition in dip Ppt on director identification number Ppt on limitation act bc