Download presentation

Presentation is loading. Please wait.

Published byBrenda Comber Modified over 2 years ago

1
Section 14.1 Intro to Graph Theory

2
Beginnings of Graph Theory Euler’s Konigsberg Bridge Problem (18 th c.) Can one walk through town and cross all bridges exactly once? Graph theory provides a way to mathematically answer that question

3
Konigsberg Two islands connected to land and each other by 7 bridges:

4
Representing the problem The Konigsberg problem can be represented by a graph A DOT is a VERTEX. In this problem, a vertex represents a land mass. A line is an EDGE. Land masses are connected by EDGES if they are linked (by a bridge, in this problem) Two vertices are ADJACENT if they share an edge. Land masses are adjacent if they are connected by a bridge.

5
Terminology VERTEX There are 4 vertices EDGE Vertex D has 3 edges DEGREE Vertex D is of degree 3 Vertex A is of degree 5 ADJACENT Vertex A is adjacent to vertex D Vertex C is not adjacent to vertex B

6
More Terminology Odd vs. Even A vertex is ODD if its degree is an odd number Likewise, a vertex is EVEN if its degree is an even number Is A odd or even? Is C odd or even?

7
Back to the question… Can you walk on each bridge exactly once? Try using the graph and a pencil: Trace a route without picking up your pencil. What did you find?

8
Solving the bridge problem What do you notice about the degree of all the vertices? Are the vertices odd or even? We will solve this problem in Sec. 14.2.

9
Moving on a graph PATH: a sequence of adjacent vertices and the edges connecting them. In the graph above, an example of a path is C, D, B. CIRCUIT: Path that begins and ends at the same vertex. In the graph above, an example of a circuit is A, D, B, A. In Konigsberg, the problem was to find a CIRCUIT that uses every edge.

10
Connected vs Disconnected A graph is CONNECTED if there is a path between any two vertices of the graph. This Graph is DISCONNECTED B C D A F E This Graph is CONNECTED B C D A F E

11
Making a Graph Disconnected A BRIDGE is an edge that if removed from a connected graph, it would disconnect the graph. The edge DE is a bridge There are two other bridges in this graph. Can you find them? The edge DE is a bridge B C D A F E

Similar presentations

OK

Lecture 21 Paths and Circuits CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.

Lecture 21 Paths and Circuits CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on satellite orbital slots Ppt on online registration system Download ppt on rise of hitler Ppt on beer lambert law definition Ppt on save water Download ppt on harappan civilization Ppt on polytene chromosomes in drosophila Ppt on applied operational research journal Simple backgrounds for ppt on social media Free download ppt on conservation of wildlife