Presentation is loading. Please wait.

Presentation is loading. Please wait.

Department of Biomedical, Human Factors, & Industrial Engineering Head Position and Frame of Reference in Flight: The Opto-kinetic Cervical Reflex Jennie.

Similar presentations


Presentation on theme: "Department of Biomedical, Human Factors, & Industrial Engineering Head Position and Frame of Reference in Flight: The Opto-kinetic Cervical Reflex Jennie."— Presentation transcript:

1 Department of Biomedical, Human Factors, & Industrial Engineering Head Position and Frame of Reference in Flight: The Opto-kinetic Cervical Reflex Jennie J. Gallimore, Ph.D. June 24, 2009 NASA Langley

2 Department of Biomedical, Human Factors, & Industrial Engineering Topics Spatial Disorientation Attitude Indicator OKCR Research Considerations for Cockpit Displays Other On Going Research at WSU

3 Department of Biomedical, Human Factors, & Industrial Engineering Spatial Disorientation The inability of the flight crew to correctly perceive attitude, altitude, or airspeed of the aircraft in relationship to the earth and other points of reference. SD has been categorized into three types. Type I unrecognized (where most mishaps are classified) Type II recognized Type III incapacitating

4 Department of Biomedical, Human Factors, & Industrial Engineering Spatial Disorientation Accidents US Air Force , 20.2% of accidents, 60 lives, 1.4 billion dollars [Davenport00]. US Army reported 27% [Kuipers90]. US Navy and Marine Corp, 26%, 101 accidents [Johnson00] –Three times as many lives were lost for SD related mishaps compared to non-SD related mishaps. –Mishap data also indicate that pilots who experience SD are very experienced, and the mishap rate has not decreased in the last 20 years.

5 Department of Biomedical, Human Factors, & Industrial Engineering First Flight Instrument? Wright 1909 Military Flyer Slip Ribbon (first flight instrument)

6 Department of Biomedical, Human Factors, & Industrial Engineering First Mechanical Flight Instrument Sperry’s bank and turn indicator, 1918 Worked best in clear weather

7 Department of Biomedical, Human Factors, & Industrial Engineering First “Blind” Sortie Sep 24 th 1929 under direction of Guggenheim in NY (Mitchel Field) First ‘Blind’ sortie, takeoff to landing First use of artificial horizon, Kollsman altimeter, and directional gyro

8 Department of Biomedical, Human Factors, & Industrial Engineering Attitude Indicator Level flight20-degree turn

9 Department of Biomedical, Human Factors, & Industrial Engineering Attitude Indicator Example Real World –Plane moves –Horizon remains static Indicated World –Plane remains static –Horizon moves –Indicator reverses reality Dangerous if visual reference is lost –Pilot disorientation –Control reversal errors

10 Department of Biomedical, Human Factors, & Industrial Engineering

11

12

13 Opto-Kinetic Cervical Reflex (OKCR) Pilots align their heads toward the horizon during Visual Meteorological Conditions (VMC) flight. Pilots do not tilt their heads during Instrument Meteorological Conditions (IMC) flight. Visual to Instrument transition can cause reversal errors.

14 Department of Biomedical, Human Factors, & Industrial Engineering Head Tilt Patterson (1989) noticed that pilots align their heads with the horizon. If they are aligning their heads with the aircraft then the view from the windscreen is a fixed horizon (not moving).

15 Department of Biomedical, Human Factors, & Industrial Engineering F/A-18 aircraft (Blue Angel) 73 degrees of bank (VMC, +Gz Turn). OKCR Head tilt = 31degrees away from the Gz axis. Horizon Line with 73 degrees of bank angle Horizon Line with 73 degrees of bank angle Opto-Kinetic Cervical Reflex (In-flight)

16 Department of Biomedical, Human Factors, & Industrial Engineering WSU Research Investigating Head Tilt –Patterson (1995, 1997) –Smith et al (1997) –Merryman et al (1997) –Gallimore et al (1999, 2000) –Liggett & Gallimore (2001) –Gallimore, Liggett & Patterson (2001) –Others since

17 Department of Biomedical, Human Factors, & Industrial Engineering OKCR Studies AuthorPlat- form Visual Field Size Instru- ments VMC Task OCKR Found? IMC Task OKCR Found? UA Task CRE % Subs Patterson (1995) Fixed aircraft sim Full dome 180 o HDD AIX YesXNoX65%16 Smith et al. (1997) Fixed aircraft sim Full dome 180 o HDD AIX Yes16 Merryman et al. (1997) F-15 aircraft Real world HDD AI HUD X Yes9 Braithwaite et al (1998) Moving Heli- copter Sim Half dome 160 o H FOV HDD AI NVG X YesXNoX25%20 Gallimore et al. (1999) Fixed aircraft sim Full dome 180 o HDD AIX YesXNoX31%12 Gallimore et al. (2000) Fixed aircraft sim Full dome 180 o HDD AIIX YesXNo26

18 Department of Biomedical, Human Factors, & Industrial Engineering Horizon Roll Vs. Head Roll for Low-Level Route Patterson et al.

19 Department of Biomedical, Human Factors, & Industrial Engineering Three graduate studies: Patterson, Merryman, Smith

20 Department of Biomedical, Human Factors, & Industrial Engineering Merryman & Smith

21 Department of Biomedical, Human Factors, & Industrial Engineering Results: Head tilt with respect to aircraft bank during low-level route Gallimore, et al (1999)

22 Department of Biomedical, Human Factors, & Industrial Engineering OKCR Results

23 Department of Biomedical, Human Factors, & Industrial Engineering OKCR as a function of task and field of view

24 Department of Biomedical, Human Factors, & Industrial Engineering Reversal Error Tendency for pilots to mistake motion of the artificial horizon as a relative motion of the wings. Pilots roll or pitch the aircraft in opposite direction. Researchers who have documented this error –Fitts and Jones (1947) –Johnson and Roscoe (1972) –Roscoe and Williges (1975) –Roscoe (1986) - Boeing 747 accident

25 Department of Biomedical, Human Factors, & Industrial Engineering Sensory-Spatial Conflict and Control Reversal Error (Patterson et al findings) Control reversal error during IMC “out” to “in” visual transition. Experienced U.S. military rated pilots commit 25-65% reversal errors. Likelihood of reversal errors by general aviation pilots is probably even greater. A reversal error can lead to flight into terrain or a graveyard spiral. This is likely what happened to the pilot of Air India and to John F. Kennedy, Jr. References on reversal errors: Patterson, et al, 1997 Braithwaite,et al, 1998 Gallimore, et al., (1999) Liggett & Gallimore (in press)

26 Department of Biomedical, Human Factors, & Industrial Engineering Number and Magnitude of Reversal Errors Gallimore, et al findings 40 Degrees60 Degrees100 Degrees VMC IMC 8 errors out of 246 errors out of 24 9 errors out of 24 4(17.39%) 1(.04%)5(20.83%) 4(17.39%) 5(20.83%)4(17.39%) Average reversal error magnitude o Average reversal error magnitude 9.30 o Average reversal error magnitude 9.34 o Combined

27 Department of Biomedical, Human Factors, & Industrial Engineering Transitions What happens during the transition from visual to instruments?  The pilot’s view of the cockpit suddenly becomes stationary as his view of the display’s artificial horizon begins moving.  Pilots must instantly reverse their orientation strategy.  Pilots sensory-spatial compatibility between the control stick motion and visual feed back.

28 Department of Biomedical, Human Factors, & Industrial EngineeringSummary Pilots reflexively tilt heads toward horizon during VMC roll maneuvers. Head movement acts to stabilize retinal image. Generated by motion on retina, not vestibular. Stabilized horizon is the primary visual cue. Peripherally viewed cockpit structures secondary cues. Secondary cues move with airframe. Control movement compatible with secondary cues.

29 Department of Biomedical, Human Factors, & Industrial Engineering Summary (Cont.) Beyond 40 degrees of aircraft roll there is a decrease in head displacement, so pilots can not stabilize the horizon. Horizon acceleration, stabilization of secondary cues. Sudden switch may lead to false perceptions. When transitioning from visual to instruments –motion reversal b/w outside and inside visual cues –control display incompatibility –need to switch cognitive model

30 Department of Biomedical, Human Factors, & Industrial Engineering How does OKCR affect current display technologies? Head down Attitude Indicator –Reversal errors HUD –Head may tilt out of the HUD eye box and pilot may not see a pull up X.

31 Department of Biomedical, Human Factors, & Industrial Engineering HUD The Head Up Display (HUD) presents symbols to the pilot, displaying them over the real world.

32 Department of Biomedical, Human Factors, & Industrial Engineering HUD Symbology is Conformal

33 Department of Biomedical, Human Factors, & Industrial Engineering HUD Symbology

34 Department of Biomedical, Human Factors, & Industrial Engineering How does OKCR affect current display technologies? (cont) NVG –HUD symbology on the NVG. Head movements are not tracked. As pilot changes head position, display horizon line is no longer conformal to the real horizon. –Pilots see HUD information designed for fixed on- axis aircraft viewing regardless of head position. Pilots may not realize they are not flying in the direction they are looking.

35 Department of Biomedical, Human Factors, & Industrial Engineering Research Issues What frames of reference are important for a pilot to maintain orientation? –World - world is fixed and everything moves within it. –Aircraft - aircraft is fixed and everything moves around it. –Pilot - pilot is fixed and everything moves in relation to him.

36 Department of Biomedical, Human Factors, & Industrial Engineering Research Issues What symbology is appropriate for HMDs? –HUD symbology is being considered for use on HMDs. –HUD symbology is being used on NVGs. How do sensory reflexes affect perceived frame of reference? –OKCR, under VMC pilots align their head with the horizon.

37 Department of Biomedical, Human Factors, & Industrial Engineering Research Issues How do visual frames of reference interact with vestibular and proprioceptive inputs to provide the pilot with an "awareness" of their orientation? What contributing cognitive factors affect spatial orientation? How will HMD attitude symbology affect frames of reference in VMC and IMC? How will transitions be impacted? How can we detect when a pilot is spatially disoriented?

38 Department of Biomedical, Human Factors, & Industrial Engineering Research Issues for HMD Symbology Design What spatial sensory reflexes and visual illusions influence pilot’s perception of frame of reference? Will cognitive capture affect pilots perceptions of frame of reference? Will cognitive capture result in more transitions between symbology and the real world? When pilots transition between a perceived stationary horizon (real world cues) to a moving symbol horizon on the HMD, do they perceive the horizon symbol as stationary? What type of symbology will help provide the perception of a stationary horizon?

39 Department of Biomedical, Human Factors, & Industrial Engineering Research Issues for HMD Symbology Design If HMD symbology is used for attitude information as well as targeting, how will switching between these tasks affect frame of reference? Will pilots have a greater risk of spatial disorientation if they look off-axis more often? How will secondary flight cues be affected by use of HMDs? What current or new measures should be employed to determine if a pilot is spatially disoriented?

40 Department of Biomedical, Human Factors, & Industrial Engineering HMD Research and the OKCR Experiment I Test adequacy of Mil-Std HUD symbology presented on a see-through HMD during various tasks. –VMC flight task Pilots were instructed to bank at specific angles, rather than to bank around a waypoint. –12 Subjects –HMD Kaiser Pro – Binocular HMD, 40 o circular FOV, 100% overlap, 1280 x 1024 resolution.

41 Department of Biomedical, Human Factors, & Industrial Engineering HMD Research and the OKCR Experiment II Investigate visual cues in an immersed HMD simulation system using HUD symbology. –VMC Flight task –Varied resolution (640 x 480 & 800 x 600), HUD symbol size (small and large) –Pilots instructed to follow a yellow track line over Pensacola, FL –6 subjects –Virtual Research V8 HMD system, 48 o H x 32 o V, 100% overlap

42 Department of Biomedical, Human Factors, & Industrial Engineering HMD Research and the OKCR Experiment III Investigate the effects of non-congruent motion on performance in an immersive HMD system. –VMC flight task flown on land and on Navy mind sweeper in Pensacola Bay. –Pilots instructed to follow a yellow track line over Pensacola, FL –9 subjects –Sony i-glasses, 24 o H x 18 o V, 100% overlap, 789 x 230 Resolution

43 Department of Biomedical, Human Factors, & Industrial Engineering HMD Results

44 Department of Biomedical, Human Factors, & Industrial Engineering OKCR Differences Different visual scenes/cues cause difference in pilot OKCR response –Reducing FOV –Manipulating altitude Amount of head tilt depends on amount of retinal movement. Reduction in peripheral vision may play a role Reducing FOV may reduce how compelling the visual horizon appears

45 Department of Biomedical, Human Factors, & Industrial Engineering OKCR Differences Immersive HMD simulation studies did not provide any secondary visual cues (cockpit structures). –Do pilots reduce head movements when they lack a stabilizing cue? If experiencing simulator sickness may reduce head movements.

46 Department of Biomedical, Human Factors, & Industrial Engineering Control Reversal Errors HMD Liggett and Gallimore findings Overall CRE rate 28%, similar to previous studies. Magnitude range: 6 degrees to 201 degrees A conformal horizon symbol did not reduce CREs. Because we know they were not tilting in IMC, they still had to change frames of reference from world to aircraft.

47 Department of Biomedical, Human Factors, & Industrial Engineering Control Reversal Errors HMD Liggett and Gallimore findings Dependent measure: Altitude Change –Significant difference CRE group average: 3382 ft MSL No CRE group average: 1810 ft MSL Pilots with CREs obviously confused. Focusing on pitch and bank information in central part of symbology. Fail to scan airspeed and altitude information.

48 Department of Biomedical, Human Factors, & Industrial Engineering 3. Avoidance and recognition of Visual Illusions (perspective illusion) 1. Recognition of pilot spatial awareness strategies 2. Avoidance and recognition of spatial disorientation (VMC-IMC form/ reversal error) 4. Design of flightdeck displays

49 Department of Biomedical, Human Factors, & Industrial Engineering Spatial disorientation factor Perspective (moon) illusion

50 Department of Biomedical, Human Factors, & Industrial Engineering Example: Perspective Illusion

51 Department of Biomedical, Human Factors, & Industrial Engineering

52 References Aviation Research Jenkins, J. C., and Gallimore, J.J. (2008). Configural display design features to promote pilot situation awareness in helmet-mounted displays. Aviation, Space and Environmental Medicine, 79, Stephens, M., Gallimore, J., and Albery, W. (2002) Spectral Analysis of Electroencephalographic Response to Spatial Disorientation. Proceedings of the 12 th International Symposium on Aviation Psychology: Dayton OH. (pp ). Liggett, K.K. and Gallimore, J.J. (2002). The effects of frame of reference and HMD symbology on control reversal errors. Aviation, Space, and Environmental Medicine;73: Gallimore, J.J., Liggett, K.K. and Patterson, F.R. (2001). The Opto-Kinetic Cervical Reflex in Flight Simulation. Proceedings of the American Institute of Aeronautics and Astronautics Modeling and Simulation Conference and Exhibit, Aug 6-9, 2001, Montreal, Canada, Paper No: : pp 1-7. * Best Paper.

53 Department of Biomedical, Human Factors, & Industrial Engineering References Aviation Research Liggett, K. and Gallimore, J.J. (2001) The OKCR and Pilot Performance During Transitions Between Meteorological Conditions Using HMD Attitude Symbology. In Proceedings of the Human Factors and Ergonomics Society 45 th Annual Meeting, (pp ) Santa Monica. CA HFES. Gallimore, J.J., Patterson, F.R., Brannon, N.G., and Nalepka, J.P. (2000). The opto-kinetic cervical reflex during formation flight. Aviation, Space and Environmental Medicine 2000;71: Gallimore J. J., Brannon, N. G., Patterson, F.R., and Nalepka, J.P. (1999). Effects of FOV and aircraft bank on pilot head movement and reversal errors during simulated flight. Aviation, Space and Environmental Medicine, 70(12): Gallimore, J.J., Brannon, N.G., and Patterson F.R. (1998). The Effects of Field-of- View on Pilot Head Movement During Low Level Flight. In Proceedings of the Human Factors and Ergonomics Society 42nd Annual Meeting, Chicago, IL (pp. 6-10). Patterson F. R., Cacioppo, A. J., Gallimore, J.J., Hinman, G.E., and Nalepka, J.P. (1997). Aviation spatial orientation in relationship to head position and attitude interpretation. Aviation, Space and Environmental Medicine, 68(6),

54 Department of Biomedical, Human Factors, & Industrial Engineering Other Research A Predictive Model Of Cognitive Performance Under Acceleration Stress –Submitted to Aviation, Space, Environmental Medicine, June 09 Three-Dimensional Technology for Space Operation Applications Multi-modal Displays for Portraying Meta-Info to Support Net-Centric C2 Process Control Displays Virtual Patients Collaborative Computer Agents with Personality

55 Department of Biomedical, Human Factors, & Industrial Engineering Acknowledgements CDR Frederick Patterson, Ph.D., Retired Naval Aerospace Medical Research Laboratory United States Navy

56 Department of Biomedical, Human Factors, & Industrial Engineering Thank You


Download ppt "Department of Biomedical, Human Factors, & Industrial Engineering Head Position and Frame of Reference in Flight: The Opto-kinetic Cervical Reflex Jennie."

Similar presentations


Ads by Google