Download presentation

Presentation is loading. Please wait.

Published byAmina Leighton Modified over 3 years ago

1
1 Smooth Games and Intrinsic Robustness Christodoulou and Koutsoupias, Roughgarden Slides stolen/modified from Tim Roughgarden TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A

2
2

3
Congestion Games Agent i has a set of strategies, S i, each strategy s in S i is a set of resources The cost to an agent is the sum of the costs of the resources r in s used by the agent when choosing s The cost of a resource is a function of the number of agents using the resource f r (# agents) 3

4
4 Price of Anarchy Price of anarchy: [Koutsoupias/Papadimitriou 99] quantify inefficiency w.r.t some objective function. –e.g., Nash equilibrium: an outcome such that no player better off by switching strategies Definition: price of anarchy (POA) of a game (w.r.t. some objective function): optimal obj fn value equilibrium objective fn value the closer to 1 the better

5
5 Network w/2 players: st 2x 12 5x 5 0

6
6 Def: the cost C(f) of flow f = sum of all costs incurred by traffic (avg cost × traffic rate) Formally: if c P (f) = sum of costs of edges of P (w.r.t. the flow f), then: C(f) = P f P c P (f) st st x 1 ½ ½ Cost = ½½ +½1 = ¾

7
7 Def: linear cost fn is of form c e (x)=a e x+b e

8
8 Nash Equilibrium: To Minimize Cost: Price of anarchy = 28/24 = 7/6. if multiple equilibria exist, look at the worst one st 2x 12 5x 5 cost = 14+10 = 24 cost = 14+14 = 28 st 2x 12 5x 5 0 0

9
9 Theorem : [Roughgarden/Tardos 00] for every non- atomic flow network with linear cost fns: ≤ 4/3 × i.e., price of anarchy non atomic flow ≤ 4/3 in the linear latency case. cost of non- atomic Nash flow cost of opt flow

10
10 Abstract Setup n players, each picks a strategy s i player i incurs a cost C i (s) Important Assumption: objective function is cost(s) := i C i (s) Key Definition: A game is (λ,μ)-smooth if, for every pair s,s * outcomes (λ > 0; μ < 1): i C i (s * i,s -i ) ≤ λ●cost(s * ) + μ●cost(s)

11
11 Smooth => POA Bound Next: “canonical” way to upper bound POA (via a smoothness argument). notation: s = a Nash eq; s * = optimal Assuming (λ,μ)-smooth: cost(s) = i C i (s) [defn of cost] ≤ i C i (s * i,s -i ) [s a Nash eq] ≤ λ●cost(s * ) + μ●cost(s) [(*)] Then: POA (of pure Nash eq) ≤ λ/(1-μ).

12
12 “Robust” POA Best (λ,μ)-smoothness parameters: cost(s) = i C i (s) ≤ i C i (s * i,s -i ) ≤ λ●cost(s * ) + μ●cost(s) Minimizing: λ/(1-μ).

13
Congestion games with affine cost functions are (5/3,1/3)- smooth Claim: For all non-negative integers y, z : 13

14
Thus, 14 a,b ≥0

15
15 Why Is Smoothness Stronger? Key point: to derive POA bound, only needed i C i (s * i,s -i ) ≤ λ●cost(s * ) + μ●cost(s) to hold in special case where s = a Nash eq and s * = optimal. Smoothness: requires (*) for every pair s,s * outcomes. –even if s is not a pure Nash equilibrium

16
16 The Need for Robustness Meaning of a POA bound: if the game is at an equilibrium, then outcome is near-optimal.

17
17 The Need for Robustness Meaning of a POA bound: if the game is at an equilibrium, then outcome is near-optimal. Problem: what if can’t reach equilibrium? (pure) equilibrium might not exist might be hard to compute, even centrally –[Fabrikant/Papadimitriou/Talwar], [Daskalakis/ Goldberg/Papadimitriou], [Chen/Deng/Teng], etc. might be hard to learn in a distributed way Worry: are POA bounds “meaningless”?

18
18 Robust POA Bounds High-Level Goal: worst-case bounds that apply even to non-equilibrium outcomes! best-response dynamics, pre-convergence –[Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/Azar/Epstein/Mirrokni/Skopalik 08] correlated equilibria –[Christodoulou/Koutsoupias 05] coarse correlated equilibria aka “price of total anarchy” aka “no-regret players” –[Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08]

19
19 Lots of previous work uses smoothness Bounds atomic (unweighted) selfish routing [Awerbuch/Azar/Epstein 05], [Christodoulou/Koutsoupias 05], [Aland/Dumrauf/Gairing/Monien/Schoppmann 06], [Roughgarden 09] nonatomic selfish routing [Roughgarden/Tardos 00],[Perakis 04] [Correa/Schulz/Stier Moses 05] weighted congestion games [Aland/Dumrauf/Gairing/Monien/Schoppmann 06], [Bhawalkar/Gairing/Roughgarden 10] submodular maximization games [Vetta 02], [Marden/Roughgarden 10] coordination mechanisms [Cole/Gkatzelis/Mirrokni 10]

20
Beyond Pure Nash Equilibria (Static) 20 pure Nash mixed Nash correlated eq CCE Mixed: Correlated: Coarse Correlated:

21
Beyond Nash Equilibria (non-Static) Definition: a sequence s 1,s 2,...,s T of outcomes is no-regret if: for each player i, each fixed action q i : –average cost player i incurs over sequence no worse than playing action q i every time –if every player uses e.g. “multiplicative weights” then get o(1) regret in poly-time –empirical distribution = "coarse correlated eq" 21 pure Nash mixed Nash correlated eq no-regret

22
An Out-of-Equilibrium Bound Theorem: [Roughgarden STOC 09] in a (λ,μ)-smooth game, average cost of every no-regret sequence at most [λ/(1-μ)] x cost of optimal outcome. (the same bound we proved for pure Nash equilibria) 22

23
23 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost]

24
24 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost] = t i [C i (s * i,s t -i ) + ∆ i,t ] [∆ i,t := C i (s t )- C i (s * i,s t -i )]

25
25 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost] = t i [C i (s * i,s t -i ) + ∆ i,t ] [∆ i,t := C i (s t )- C i (s * i,s t -i )] ≤ t [λ●cost(s * ) + μ●cost(s t )] + i t ∆ i,t [(*)]

26
26 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost] = t i [C i (s * i,s t -i ) + ∆ i,t ] [∆ i,t := C i (s t )- C i (s * i,s t -i )] ≤ t [λ●cost(s * ) + μ●cost(s t )] + i t ∆ i,t [(*)] No regret: t ∆ i,t ≤ 0 for each i. To finish proof: divide through by T.

27
Intrinsic Robustness Theorem: [Roughgarden STOC 09] for every set C, unweighted congestion games with cost functions restricted to C are tight: maximum [pure POA] = minimum [λ/(1-μ)] congestion games w/cost functions in C (λ,μ): all such games are (λ,μ)-smooth 27

28
Intrinsic Robustness Theorem: [Roughgarden STOC 09] for every set C, unweighted congestion games with cost functions restricted to C are tight: maximum [pure POA] = minimum [λ/(1-μ)] weighted congestion games [Bhawalkar/ Gairing/Roughgarden ESA 10] and submodular maximization games [Marden/Roughgarden CDC 10] are also tight in this sense congestion games w/cost functions in C (λ,μ): all such games are (λ,μ)-smooth 28

Similar presentations

Presentation is loading. Please wait....

OK

Network Congestion Games

Network Congestion Games

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Best ppt on geothermal energy Ppt on road accidents in malaysia Ppt on the parliament of india Ppt on different types of occupations pictures Ppt on power line communication scanner Ppt on file system in unix what is Ppt on buddhism and jainism Ppt on ram and rom images Free ppt on marketing management Ppt on digital television technology