Presentation is loading. Please wait.

Presentation is loading. Please wait.

Subtropical Frost and Freeze Hazards. Freeze Damage in Citrus Trunk Fruit damage Leaf damage.

Similar presentations

Presentation on theme: "Subtropical Frost and Freeze Hazards. Freeze Damage in Citrus Trunk Fruit damage Leaf damage."— Presentation transcript:

1 Subtropical Frost and Freeze Hazards

2 Freeze Damage in Citrus Trunk Fruit damage Leaf damage

3 Freeze damage on citrus production Complete lost of citrus groves

4 Frost Hazards Ranks with pest control, nutrition, and irrigation. May be most limiting factor –1962-63 entire Northern Hemi. –Texas from 10 M boxes in 1961 to 740,000 boxes in 1964.

5 Wind Machines Only for frosts Most effective in hill and valley topography - California Mixes inversion layers (upper warmer air with lower colder air) Increase temp 0.5 to 1.5 o C One machine / 5 to 8 acres

6 Damage Continues Frost and Freeze losses in winter of 1983-84. Loss of 100,000 Ha. Brazil seldom has loss from frosts and freezes. Mediterranean area protected by Alps (Oriented east - west). Rockies are North - South.

7 Frost or Freeze? Frost - Wind is light to none (Radiation) Freeze - Wind over 10 mph (advective). Since damage occurs by ice formation - term freeze hardiness fits what happens in fruit.

8 Freeze Avoidance (Supercooling) Citrus species supercool threshold: –Fruit - - 5 o C –Mature leaves -- 7 o C –Stems -- 8.9 o C –Non-acclimated< - 2 o C –Flower -4.3 o C

9 Intercellular Ice Formation Citrus tolerates some ice formation between cells. –Watersoaking at - 3 o C may not cause leaf abscission.

10 Freeze Acclimation Function of –Soil temperature –Tissue temperature –Day length ºBetter under long days –Increased metabolites

11 Freeze Tolerance Is defined as the ability of plants to survive ice formation in extracellular tissues without significant damage to membrane or other cell components (Thomashow, 1993). –decrease of water potential in tissues due to sugar accumulation in vacuoles. –a significant increase in the abscisic acid levels which result in modification of protein synthesis. The process of adaptation to low temperatures may cause changes in the function of genes and proteins.

12 Tolerance of freeze damage Citron < limes & lemons < grapefruit & pummelo < sweet oranges < tangerines & hybrids < sour orange < satsuma < kumquats < cintranges < Trifoliate orange.

13 Maximum Acclimation Daytime temps/ 20 to 25 o C Night- time air & soil temp/ less than 12 o C for 2 weeks or more. Causes quiescence (not dormancy). Loss of hardiness > 12.5 o C.

14 Biochemical Changes Sugar content increases with acclimation. Lowers freezing point and acts as a cryoprotectant for cell membranes. Critical are minimum temp. and duration below minimum.

15 Passive Protection Methods Site selection –Weather Records –Avoid low places (Frosts) –Wind breaks N & NW (Freezes) ºTrees ºShade cloth.

16 More Passive Methods Clean cultivated, packed soil absorbs more net radiation from sun, thus more radiant energy at night than sod covered or newly cultivated orchard floor. Orangeries- since Roman times. Tree cover-Today near Sorrento, Italy. Tree wraps

17 Still More Passive Methods Japanese grow citrus in greenhouses –Frost protection –Hastens fruit maturity Taiwanese grow peaches under cover. (prevents frost & leaf curl)

18 Active Methods - University Return Stack Heating Protection against both frosts and freezes. – Initial $40 x 48 = $1920/A –Annual operating 5 gal diesel x $0.65 x 48 x 4 nights + $50 labor = $674 –Total = $2594/A first year

19 Return Stack Specifications Best of oil heaters One hole setting uses 0.3 gph Three hole setting uses 1 gph 30,000 BTU / hr (20 - 70% radiant) Energy directed horizontally Rain in stack - blow over

20 Other Heaters Large Cone - slightly more radiant energy less blow over Short Stack Heater - Smoke Open Pots - Don’t even think about it.


22 Pressurized Oil Systems Diesel delivered though underground plastic tubes Efficient Must keep nozzles cool Problems - high pressure oil, filter clogging

23 Propane Heaters Vapor Pressure of propane Temperature PSI – 70 o F 109 – 32 o F 54 – - 44 o F 0 – 130 o F 257 30,000 gal tank / 60 acre orchard

24 Solid Fuel Blocks Once cost effective - but not now Four blocks under grapefruit canopy raised temp 13 o F Unique for LGRV –Fewer frosts / season –Store under trees all year

25 Irrigation - Frost Protection Provides Sensible Heat –Warm water source Heat of Fusion Only for frosts –Evaporative cooling removes 7.5 times as much energy from irrigated area than provided by Heat of Fusion.

26 Foam wrapPolyurethane wrap Fiber-glass wrap WRAPS

27 Overhead Irrigation Heavy foliage accumulates ice which breaks limbs. Works better on strawberries and blueberries. Primarily used on citrus nurseries.

28 Microsprinklers At ground level elevates 1 to 2 o C to lower canopy No help for fruit and upper canopy Elevated about 1 m give some protection of scaffold limbs - quicker re-establishment.

29 Elevated Microsprinklers Excellent results 12.5 gph / tree Hardie Microsprinkler III Protected peach buds when air temp dropped to 18 o F (- 8 o C) Rieger, Mark and S. C. Myers. 1990. HortScience 25:632-635.

30 Microsprinkler Limitations One 5HP pump for 5 A –Same pump irrigates 20 A LRGV Irrigation Districts - water not available on demand.

31 Insulators and Tree Wraps Soil banks effective –Expensive but saves trunk. –Remove in spring. Polyurethane foam wrap banded with metal strapping. Plastic bag of water between wrap and trunk???

32 Overhead sprinklers Under tree micro-sprinkler Sprinklers

33 Damage of citrus trees by sprinkler system


Download ppt "Subtropical Frost and Freeze Hazards. Freeze Damage in Citrus Trunk Fruit damage Leaf damage."

Similar presentations

Ads by Google