Download presentation

Presentation is loading. Please wait.

Published byDanny Fadley Modified about 1 year ago

1
1.Maxwell Eqs., EM waves, wave-packets 2.Gaussian beams 3.Fourier optics, the lens, resolution 4.Geometrical optics, Snell’s law 5.Light-tissue interaction: scattering, absorption Fluorescence, photo dynamic therapy 6.Fundamentals of lasers 7.Lasers in medicine 8.Basics of light detection, cameras 9.Microscopy, contrast mechanism 10.Confocal microscopy Course outline 1. משואות מקסוול, גלים אלקטרומגנטים, חבילות גלים 2. קרניים גאוסיניות 3. אופטיקת פורייה, העדשה, הפרדה 4. אופטיקה גיאומטרית, חוק סנל 5. אינטראקציה אור - רקמה : פיזור, בליעה, פלואורסנציה, טיפול פוטו - דינמי 6. עקרונות לייזרים 7. לייזרים ברפואה 8. עקרונות גילוי אור, מצלמות 9. מיקרוסקופיה, ניגודיות 10. מיקרוסקופיה קונפוקלית

2
Plane waves Solutions for the Helmholtz equation: (proof in next slide) The real electric field: “wavelength” Reminder is independent of r infinite field!

3
Gaussian beams – the paraxial wave Slowly varying complex amplitude (in space) ‘Carrier’ plane wave Spherical wave: Plane wave: A paraxial wave is a plane wave traveling mainly along the z direction ( e -ikz, with k=2π/λ ), modulated by a complex envelope that is a slowly varying function of position, so that its complex amplitude is given by:

4
The paraxial Helmholtz equation Paraxial wave Substitute the paraxial wave into the Helmholtz equation:

5
We now assume that the variation of A(r) with z is slow enough, so that: Paraxial wave Paraxial Helmholtz equation: Transverse Laplacian: These assumptions are equivalent to assuming that and

6
One solution to the paraxial Helmholtz equation of the slowly varying complex amplitude A, has the form: Gaussian beams Where and q(z) can be separated into its real and imaginary parts: Where W(z) : beam width R(z) : wavefront radius of curvature z 0 : “Rayleigh range” Paraxial Helmholtz equation

7
Gaussian beams The full Gaussian beam: With beam parameters: A 0 and z 0 are two independent parameters which are determined from the boundary conditions. All other parameters are related to z 0 and by these equations.

8
Gaussian beams - properties Intensity At any z, I is a Gaussian function of . On the beam axis: - Maximum at z=0 - Half peak value at z = ± z 0 z=0z=z 0 z=2z 0 111 (Lorentzian) z0z0z0 I 1/2

9
Gaussian beams - properties Beam width

10
Gaussian beams - properties Beam divergence Thus the total angle is given by

11
Depth of focus z 0 : Rayleigh range Gaussian beams - properties The total depth of focus is often defined as twice the Rayleigh range.

12
Phase The total accumulated excess retardation as the wave travels from - to is . This phenomenon is known as the Gouy effect. A. Ruffin et al., PRL (1999) Gaussian beams - properties

13
Wavefront ~ spherical wave Gaussian beams - properties ~ plane wave

15
Propagation Consider a Gaussian beam whose width W and radius of curvature R are known at a particular point on the beam axis. The beam waist radius is given by located to the right at a distance Gaussian beams - properties W R W0W0 z

16
Propagating through lens Consider a Gaussian beam centered at z=0, with waist radius W 0, transmitted through a thin lens located at position z. The phase of the emerging wave therefore becomes (ignore sign): Where The transmitted wave is a Gaussian beam with width W'=W and radius of curvature R'. The sign of R is positive since the wavefront of the incident beam is diverging whereas the opposite is true of R'. The complex amplitude induced by a thin lens of focal length f is proportional to exp(-ik 2 /2f). When a Gaussian beam passes through such a component, its complex amplitude is multiplied by this phase factor. As a result, the beam width does not change ( W'=W ), but the wavefront does. Gaussian beams - properties

17
Propagating through lens The magnification factor M plays an important role: The waist radius is magnified by M, the depth of focus is magnified by M 2, and the divergence angle is minified by M. Gaussian beams - properties

18
Beam focusing For a lens placed at the waist of a Gaussian beam ( z=0 ), the transmitted beam is then focused to a waist radius W 0 ’ at a distance z' given by: Gaussian beams - properties

19
The ABCD law Reminder: where or: The ABCD Law The q -parameters, q 1 and q 2, of the incident and transmitted Gaussian beams at the input and output planes of a paraxial optical system described by the (A,B,C,D) matrix are related by: Example: transmission Through Free Space When the optical system is a distance d of free space (or of any homogeneous medium), the ray-transfer matrix components are (A,B,C,D)=(1,d,0,1) so q 2 = q 1 + d. *Generality of the ABCD law The ABCD law applies to thin optical components as well as to propagation in a homogeneous medium. Since an inhomogeneous continuously varying medium may be regarded as a cascade of incremental thin elements, the ABCD law applies to these systems as well, provided that all rays (wavefront normals) remain paraxial. Gaussian beams - properties

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google