Presentation is loading. Please wait.

Presentation is loading. Please wait.

Photosynthesis vs. Respiration. Things in Common  Both photosynthesis and respiration make ATP.  Both involve, CO 2, oxygen, sugar (C 6 H 12 O 6 ),

Similar presentations


Presentation on theme: "Photosynthesis vs. Respiration. Things in Common  Both photosynthesis and respiration make ATP.  Both involve, CO 2, oxygen, sugar (C 6 H 12 O 6 ),"— Presentation transcript:

1 Photosynthesis vs. Respiration

2

3 Things in Common  Both photosynthesis and respiration make ATP.  Both involve, CO 2, oxygen, sugar (C 6 H 12 O 6 ), and water (H 2 O)  Almost all cells go through respiration

4 phosphate removed  ATP transfers energy from the breakdown of food molecules to cell functions. –Energy is released when a phosphate group is removed. –ADP is changed into ATP when a phosphate group is added.

5 Organisms break down carbon- based molecules to produce ATP.  Carbohydrates are the molecules most commonly broken down to make ATP. –not stored in large amounts –up to 36 ATP from one glucose molecule triphosphateadenosine diphosphate tri=3 di=2

6  Fats store the most energy. –80 percent of the energy in your body –about 146 ATP from a triglyceride Proteins are least likely to be broken down to make ATP. –amino acids not usually needed for energy –about the same amount of energy as a carbohydrate

7  The light-dependent reactions capture energy from sunlight. –take place in thylakoids –water and sunlight are needed –chlorophyll absorbs energy –energy is transferred along thylakoid membrane then to light- independent reactions –oxygen is released

8  The light-independent reactions make sugars. –take place in stroma (fluid outside the thylakoids) –needs carbon dioxide from atmosphere –use energy to build a sugar in a cycle of chemical reactions

9  Photosystem II captures and transfers energy. –chlorophyll absorbs energy from sunlight –energized electrons enter electron transport chain –water molecules are split –oxygen is released as waste –hydrogen ions are transported across thylakoid membrane

10  Photosystem I captures energy and produces energy- carrying molecules. –chlorophyll absorbs energy from sunlight –energized electrons are used to make NADPH –NADPH is transferred to light- independent reactions

11 Summary of Light Dependent Reactions  Energy is captured from the sun.  Energy goes into electrons into the electron transport chain.  Water is broken down  H+ ions are transported and form NADPH  Flow of H+ ions through ATP synthase makes ATP  Electron Transport Electron Transport

12 Summary of Light Independent Reactions (Calvin Cycle)  CO 2 enters cycle  ATP and NADPH from light-dependent transfer energy  1 3-carbon molecule made for every 3 CO 2  2 3-carbon molecules bonded to make sugar  Products – 6-carbon sugar, NADP+, and ADP

13  A molecule of glucose is formed as it stores some of the energy captured from sunlight. –carbon dioxide molecules enter the Calvin cycle (this is what has sugar as an end product –energy is added and carbon molecules are rearranged –a high-energy three-carbon molecule leaves the cycle

14  two three-carbon molecules bond to form a sugar – remaining molecules stay in the cycle o A molecule of glucose is formed as it stores some of the energy captured from sunlight.

15 Cellular respiration makes ATP by breaking down sugars.  Cellular respiration is aerobic, or requires oxygen.  Aerobic stages take place in mitochondria. mitochondrion animal cell

16  Glycolysis must take place first. –anaerobic process (does not require oxygen) –takes place in cytoplasm –splits glucose into two three-carbon molecules –produces two ATP molecules

17 Cellular respiration is like a mirror image of photosynthesis.  The Krebs cycle transfers energy to an electron transport chain.  takes place in mitochondrial matrix  breaks down three-carbon molecules from glycolysis –makes a small amount of ATP –releases carbon dioxide –transfers energy- carrying molecules 6H O 2 6CO 2 6O 2 mitochondrion matrix (area enclosed by inner membrane) inner membrane ATP energy energy from glycolysis and Krebs Cycle

18 6H O 2 6CO 2 6O 2 mitochondrion matrix (area enclosed by inner membrane) inner membrane ATP energy energy from glycolysis and The electron transport chain produces a large amount of ATP. –takes place in inner membrane –energy transferred to electron transport chain –oxygen enters process –ATP produced –water released as a waste product Electron Transport

19 The Krebs cycle is the first main part of cellular respiration.  Pyruvate is broken down before the Krebs cycle.  carbon dioxide released  NADH produced  coenzyme A (CoA) bonds to two-carbon molecule

20  The Krebs cycle produces energy-carrying molecules.

21 The electron transport chain is the second main part of cellular respiration.  The electron transport chain uses NADH and FADH 2 to make ATP.  high-energy electrons enter electron transport chain  energy is used to transport hydrogen ions across the inner membrane  hydrogen ions flow through a channel in the membrane

22 The electron transport chain is the second main part of cellular respiration.  The breakdown of one glucose molecule produces up to 36 molecules of ATP. (2 from glycolysis, 2 from Kreb, 32 from ETC) –ATP synthase produces ATP –oxygen picks up electrons and hydrogen ions –water is released as a waste product o The electron transport chain uses NADH and FADH 2 to make ATP.

23 ATP Products of Cellular Respiration including glycolysis  Glycolysis – uses 2 ATP and make 4 ATP. Net gain of 2 ATP  Kreb Cycle – 2 ATP, 8 NADH, 2 FADH 2  Electron Transport Chain – 32ATP  Net gain – 36 ATP for every glucose molecule.

24 Comparison of Photosynthesis & Cellular Respiration PhotosynthesisCellular Respiration Organelle for process ChloroplastMitochondrion ReactantsCO 2 and H 2 OSugars (C 6 H 12 O 6 ) and O 2 Cycle of chemical reactions Calvin cycle in stroma of chloroplasts builds sugar molecules Krebs cycle in matrix of mitochondria breaks down carbon-based molecules Electron Transport Chain Proteins within thylakoid membrane Proteins within inner mitochondrial membrane ProductsSugars (C 6 H 12 O 6 ) and O 2 CO 2 and H 2 O

25 Fermentation allows glycolysis to continue when oxygen is unavailable.  Fermentation is an anaerobic process.  occurs when oxygen is not available for cellular respiration  does not produce ATP

26  Fermentation allows glycolysis to continue making ATP when oxygen is unavailable. Lactic acid fermentation occurs in muscle cells. –glycolysis splits glucose into two pyruvate molecules –pyruvate and NADH enter fermentation –energy from NADH converts pyruvate into lactic acid –NADH is changed back into NAD + NAD + is recycled to glycolysis

27  Fermentation is used in food production. –yogurt –cheese –bread

28 Project  In teams of 2, students will create a visual representation (e.g., poster or PowerPoint) to explain the interdependent relationships of cellular respiration and photosynthesis, and how the processes of cellular respiration and photosynthesis affect a runner in a marathon race.  Students should use few words and focus on using graphics to represent the cyclic processes. Visual representations will be peer and teacher reviewed.


Download ppt "Photosynthesis vs. Respiration. Things in Common  Both photosynthesis and respiration make ATP.  Both involve, CO 2, oxygen, sugar (C 6 H 12 O 6 ),"

Similar presentations


Ads by Google