Presentation is loading. Please wait.

Presentation is loading. Please wait.

Figure 6-01. Investigating Cell Structure and Function 1. Cell Theory 2. Microscopy- a. History b. Types 3. Studying cell organelles a.Cell homogenization.

Similar presentations


Presentation on theme: "Figure 6-01. Investigating Cell Structure and Function 1. Cell Theory 2. Microscopy- a. History b. Types 3. Studying cell organelles a.Cell homogenization."— Presentation transcript:

1 Figure 6-01

2 Investigating Cell Structure and Function 1. Cell Theory 2. Microscopy- a. History b. Types 3. Studying cell organelles a.Cell homogenization b. Cell Fractionation

3 LE 6-2 Measurements 1 centimeter (cm) = 10 –2 meter (m) = 0.4 inch 1 millimeter (mm) = 10 –3 m 1 micrometer (µm) = 10 –3 mm = 10 –6 m 1 nanometer (nm) = 10 –3 µm = 10 –9 m 10 m 1 m Human height Length of some nerve and muscle cells Chicken egg 0.1 m 1 cm Frog egg 1 mm 100 µm Most plant and animal cells 10 µm Nucleus 1 µm Most bacteria Mitochondrion Smallest bacteria Viruses 100 nm 10 nm Ribosomes Proteins Lipids 1 nm Small molecules Atoms 0.1 nm Unaided eye Light microscope Electron microscope

4 Table 7.1 Different Types of Light Microscopy: A Comparison

5 LE 6-3a Brightfield (unstained specimen) 50 µm Brightfield (stained specimen) Phase-contrast

6 LE 6-3b 50 µm Confocal Differential- interference- contrast (Nomarski) Fluorescence

7 LE µm Scanning electron microscopy (SEM) Cilia Longitudinal section of cilium Transmission electron microscopy (TEM) Cross section of cilium

8 LE 6-4a 1 µm Scanning electron microscopy (SEM) Cilia

9 LE 6-4b 1 µm Longitudinal section of cilium Transmission electron microscopy (TEM) Cross section of cilium

10 LE 6-9a Flagellum Centrosome CYTOSKELETON Microfilaments Intermediate filaments Microtubules Peroxisome Microvilli ENDOPLASMIC RETICULUM (ER Rough ER Smooth ER Mitochondrion Lysosome Golgi apparatus Ribosomes: Plasma membrane Nuclear envelope NUCLEUS In animal cells but not plant cells: Lysosomes Centrioles Flagella (in some plant sperm) Nucleolus Chromatin

11 Inner Life of A Cell /6850.htmlhttp://www.studiodaily.com/main/searchlist /6850.html

12 LE 6-5a Homogenization Homogenate Tissue cells Differential centrifugation

13 LE 6-5b Pellet rich in nuclei and cellular debris Pellet rich in mitochondria (and chloro- plasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) Pellet rich in ribosomes 150,000 g 3 hr 80,000 g 60 min 20,000 g 20 min 1000 g (1000 times the force of gravity) 10 min Supernatant poured into next tube

14 Cell Structure 1. Basic requirements to be a cell Cytoplasm DNA Ribosome Cell membrane 2.Prokaryotic and eukaryotic cells 3. Limitations to cell size a.Lower limits b.Upper limits-SA/volume ratio

15 Prokaryotic and Eukaryotic Cells

16 LE 6-6 A typical rod-shaped bacterium A thin section through the bacterium Bacillus coagulans (TEM) 0.5 µm Pili Nucleoid Ribosomes Plasma membrane Cell wall Capsule Flagella Bacterial chromosome

17 LE 6-7 Total surface area (height x width x number of sides x number of boxes) Total volume (height x width x length X number of boxes) Surface-to-volume ratio (surface area  volume) Surface area increases while Total volume remains constant

18 An overview of animal cell structure 1.Nucleus 2.Ribosomes 3.Endomembrane System a.RER & SER b.Vesicles c.Golgi apparatus d.Vacuoles e.Lysosomes 4. Mitochondria 5. Cytoskeleton

19 LE 6-9a Flagellum Centrosome CYTOSKELETON Microfilaments Intermediate filaments Microtubules Peroxisome Microvilli ENDOPLASMIC RETICULUM (ER Rough ER Smooth ER Mitochondrion Lysosome Golgi apparatus Ribosomes: Plasma membrane Nuclear envelope NUCLEUS In animal cells but not plant cells: Lysosomes Centrioles Flagella (in some plant sperm) Nucleolus Chromatin

20 LE 6-8 Hydrophilic region Hydrophobic region Carbohydrate side chain Structure of the plasma membrane Hydrophilic region Phospholipid Proteins Outside of cell Inside of cell 0.1 µm TEM of a plasma membrane

21 What is contained in the nucleus of a cell? 1.DNA 2.Chromosomes 3.Genes 4.R-rna 5.All of the above

22 LE 6-10 Close-up of nuclear envelope Nucleus Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex Ribosome Pore complexes (TEM)Nuclear lamina (TEM) 1 µm Rough ER Nucleus 1 µm 0.25 µm Surface of nuclear envelope

23 What is the function of ribosomes? 1.Protein synthesis 2.DNA synthesis 3.Intracellular digestion 4.Transport of proteins outside of the cell

24 LE 6-11 Ribosomes 0.5 µm ER Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit Small subunit Diagram of a ribosome TEM showing ER and ribosomes

25 There is a difference in the make-up of cytoplasmic eukaryotic ribosomes and prokaryotic ribosomes 1.True 2.False

26 Proteins that are secreted from a cell are produced by: 1.Membrane-bound ribosomes 2.Free ribosomes

27 Secreted proteins are carried away from the ER by: 1.The golgi apparatus 2.Lysosomes 3.Mitochondria 4.vesicles

28 LE 6-12 Ribosomes Smooth ER Rough ER ER lumen Cisternae Transport vesicle Smooth ER Rough ER Transitional ER 200 nm Nuclear envelope

29 If a secreted protein needs to be chemically modified after it leaves the ER in a vesicle, it will go to: 1.A lysosome 2.Mitochondria 3.A storage vacuole 4.The Golgi apparatus

30 LE Nuclear envelope Nucleus Rough ER Smooth ER Transport vesicle cis Golgi trans Golgi Plasma membrane

31 Vesicles from either the ER or the Golgi that contain proteins involved in intracellular digestion fuse to form this cell organelle 1.Storage vacuole 2.Mitochondria 3.Lysosome

32 Lysosomes are involved in destroying “worn out” cell organelles: 1.True 2.False

33 Up to 5 optional points You have 3 minutes to write a short answer to this question: Why is it important that the pH of a lysosome is acidic compared to the cytoplasm of the cell?

34 LE 6-14a Phagocytosis: lysosome digesting food 1 µm Plasma membrane Food vacuole Lysosome Nucleus Digestive enzymes Digestion Lysosome Lysosome contains active hydrolytic enzymes Food vacuole fuses with lysosome Hydrolytic enzymes digest food particles

35 LE 6-14b Autophagy: lysosome breaking down damaged organelle 1 µm Vesicle containing damaged mitochondrion Mitochondrion fragment Lysosome containing two damaged organelles Digestion Lysosome Lysosome fuses with vesicle containing damaged organelle Peroxisome fragment Hydrolytic enzymes digest organelle components

36 Malfunctions within a lysosome can cause diseases. 1.True 2.False

37 Vacuoles 1.Can be formed by endocytosis 2.May store substances the cell will need later 3. Can be formed by vesicles joining together 4.Can be filled with water 5.All of the above

38 LE 7-14 Filling vacuole 50 µm Contracting vacuole

39 This cell organelle has a structure adapted for making ATP during cellular respiration. 1.Lysosome 2.Nucleus 3.Vacuole 4.Golgi apparatus 5.mitochondria

40 LE 6-17 Mitochondrion Intermembrane space Outer membrane Inner membrane Cristae Matrix 100 nm Mitochondrial DNA Free ribosomes in the mitochondrial matrix

41 The Cytoskeleton 1.Made up of 3 elements a. Microtubules b. Microfilaments c. Intermediate filaments 2. Functions-diverse including maintaining cells shape; motility; contraction; and organelle movement

42 LE 6-20 Microtubule Microfilaments 0.25 µm

43 Table 6-1a

44 LE µm Microtubule Centrosome Centrioles Longitudinal section of one centriole Microtubules Cross section of the other centriole

45 Cilia and Flagella Cell Movement

46 LE 6-23a 5 µm Direction of swimming Motion of flagella

47 LE 6-23b 15 µm Direction of organism’s movement Motion of cilia Direction of active stroke Direction of recovery stroke

48 This cell organelle contains 2 compartments separated by a membrane, which is necessary for chemiosmosis to occur 1.Golgi apparatus 2.Mitochondria 3.RER 4.Lysosome 5.vacuole

49 Which of the following statements is/are true? 1.The cytoskeleton is composed of protein 2.The cytoskeleton is involved in the segregation of chromosomes during mitosis 3.The cytoskeleton can reorganize by polymerizing/depolymerizing 4.A and B 5.B and C 6.All of the above

50 LE 6-24a 0.5 µm Microtubules Plasma membrane Basal body

51 LE 6-24b Plasma membrane Outer microtubule doublet 0.1 µm Dynein arms Central microtubule Cross-linking proteins inside outer doublets Radial spoke 0.5 µm

52 LE 6-25b Wavelike motion Cross-linking proteins inside outer doublets ATP Anchorage in cell Effect of cross-linking proteins

53 Organelle Movement Position of organelles not fixed in the cell

54 LE 6-21a Vesicle Receptor for motor protein Microtubule of cytoskeleton Motor protein (ATP powered) ATP

55 LE 6-21b 0.25 µm Microtubule Vesicles

56 Table 6-1c

57 LE 6-26 Microfilaments (actin filaments) Microvillus Plasma membrane Intermediate filaments 0.25 µm

58 Table 6-1b

59 LE 6-27a Muscle cell Actin filament Myosin filament Myosin arm Myosin motors in muscle cell contraction

60 LE 6-27b Cortex (outer cytoplasm): gel with actin network Amoeboid movement Inner cytoplasm: sol with actin subunits Extending pseudopodium

61 LE 6-27c Nonmoving cytoplasm (gel) Cytoplasmic streaming in plant cells Chloroplast Streaming cytoplasm (sol) Cell wall Parallel actin filaments Vacuole

62 Dyneine walking is a key event in this cellular process: 1.Chemiosmosis 2.Amoeboid movement 3.Cytokenesis 4.Motility using flagella 5.All of the above

63 Plant Cell Structure 1. All of the same organelles and structures that are in animals plus a.Cell wall b.Large central vacuole c.Chloroplasts

64 LE 6-9b Rough endoplasmic reticulum In plant cells but not animal cells: Chloroplasts Central vacuole and tonoplast Cell wall Plasmodesmata Smooth endoplasmic reticulum Ribosomes (small brown dots) Central vacuole Microfilaments Intermediate filaments Microtubules CYTOSKELETON Chloroplast Plasmodesmata Wall of adjacent cell Cell wall Nuclear envelope Nucleolus Chromatin NUCLEUS Centrosome Golgi apparatus Mitochondrion Peroxisome Plasma membrane

65 LE 6-28 Central vacuole of cell Plasma membrane Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole of cell Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata

66 LE µm Central vacuole Cytosol Tonoplast Central vacuole Nucleus Cell wall Chloroplast

67 LE 6-18 Chloroplast DNA Ribosomes Stroma Inner and outer membranes Granum Thylakoid 1 µm

68 LE 6-19 Chloroplast Peroxisome Mitochondrion 1 µm

69 This cell organelle contains 2 compartments separated by a membrane, which is necessary for chemiosmosis to occur 1.Golgi apparatus 2.Mitochondria 3.RER 4.Chloroplast 5.2 and 4

70 Because plant cells have a large central water vacuole, they must also have : 1.Chloroplasts 2.Lysosomes 3.Mitochondria 4.A cell wall 5.RER

71 Plays a role in cytoplasmic streaming, amoeboid movement, and muscle contraction: 1.Microfilaments 2.Intermediate filaments 3.Microtubules 4.Dyneine walking 5.All of the above

72 These in class clicker questions are helpful 1.Strongly Agree 2.Agree 3.Neutral 4.Disagree 5.Strongly Disagree

73 Cell Surrface Molecules/Connections 1.Cell surface molecules (glycocalyx) 2.Cell Connections-Plants a.Plasmodesmata 3. Cell connections-Animals a.Tight junctions b.Desmosomes c.Gap junctions

74 LE 6-29a EXTRACELLULAR FLUID Proteoglycan complex Collagen fiber Fibronectin Integrin Micro- filaments CYTOPLASM Plasma membrane

75 LE 6-30 Interior of cell Interior of cell 0.5 µm PlasmodesmataPlasma membranes Cell walls

76 LE 6-31 Tight junctions prevent fluid from moving across a layer of cells Tight junction 0.5 µm 1 µm 0.1 µm Gap junction Extracellular matrix Space between cells Plasma membranes of adjacent cells Intermediate filaments Tight junction Desmosome Gap junctions

77 LE µm


Download ppt "Figure 6-01. Investigating Cell Structure and Function 1. Cell Theory 2. Microscopy- a. History b. Types 3. Studying cell organelles a.Cell homogenization."

Similar presentations


Ads by Google