Presentation is loading. Please wait.

Presentation is loading. Please wait.

Time on Stream Stability of H-ZSM-5 Catalyst on

Similar presentations


Presentation on theme: "Time on Stream Stability of H-ZSM-5 Catalyst on"— Presentation transcript:

1 Time on Stream Stability of H-ZSM-5 Catalyst on
Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional Teknik Kimia Palembang, 19 Juli 2006 Oleh Setiadi or SMS Department Of Chemical Engineering Faculty Of Engineering - University Of Indonesia

2 Aseton Proses Katalitik Hidrokarbon C1- C10 ZSM-5 Introduction
Aseton : senyawa organic polar yang dapat diproduksi dari materi hayati renewable mll. fermentasi, pirolisis , maupun new process via supercritical decomposition C1 : CH4 C2 : C2H4, C2H6 C3 : C3H6, C3H8 C4 : C4H8, C4H10 C5 : C5H10, C6 : C6H6, C6 alifatik C7 : Toulena, Alifatik, C8 : Xylena, alifatik C9 : Mesitylene (1,3,5 TMB) C10 : Durene, Naphthalene Kemampuan shape-selectivity ZSM-5 terletak pada bangunan struktur kristalnya yang diameter/bukaan pori sekitar 0,56 nm dan hampir homogen. Katalis ZSM-5 banyak digunakan untuk transformasi reaksi-reaksi hidrokarbon dibanding dgn. ZSM-5 digunakan reaksi senyawa organik polar

3 CO2 Un-converted CO2 Non-Renewable Route Introduction Biomass
Geological Time Frame Process (Millions years) Biomass derived liquid Fossil Resources – Crude Oils (C1-C40) Hydrocarbons Renewable Route (The Yellow Arrows) Transformation & Utilization Biological time frame Fuel : LPG (C3-C4 H.Cs), Gasoline(C5-C10 H.Cs), Diesel Fuel, Kerosene, Avian Jet Fuel, etc Biomass Materials Fuel Combustion Waste biological activities Fotosintesis CO2 CO2 Un-converted CO2 H2O The Concept Carbon Cycle Route for renewable biomass and non-renewable as the origins of hydrocarbons for fuels & chemicals (developed from Kojima, 1998; Metzger & Eissen, 2004 dan Padabed et al.,2002)

4 Introduction Biomass Materials
Fossil Resources (Petroleum crude Oil) Refinery Process & Catalytic Cracking Unit (FCC) Biomass Materials Biomass-derived liquid from fermentation Products (sagu, singkong, tetes tebu/molasses, 80 % Yield Limbah Tandan Kosong Sawit, dll.) Renewable Ethanol Acetone, Butanol C1-C10 Aromatic Compounds Fuel (Gasohol), (O.N., RVP) Petrochemicals Non-renewable Resources A Schematic Diagram of C1-C10 Hydrocarbons Route from the Origin Target Compounds Biomass-Based Technology established ??? Catalytic Reaction Process? Catalyst ? HZSM-5 & Nat. Zeolite Reaction condition? Scope of this Research Work Minyak Nabati ( Sawit, Jarak, )

5 Fundamental Review O H3C- C-CH=C(CH3)2 Mesityl oxide (MSO) O OH ║ │ CH3 C CH2 C (CH3)2 Diacetone alcohol (DAA) (H3C)2C=CHCCH=C(CH3)2 phorone or diisopropylideneketone 2 [ H3C-C- CH3] 2 molecules of Acetones Self Aldol condensation Dehydration - H2O Further self Aldol condensation + (CH3)2CO In progress of reaction: Continued condensation, forming higher molecular weight species which may accumulate in pore channel and shutting down the reaction isophorone Cracking inside the Pores at higher Temp > 350 oC C3-C4 LPG Acetic acid 1,3,5-Trimethylbenzene (Mesitylene) Monoaromatic : Benzene Xylene Toluene EthylBenzene C9 monoaromatic C10monoaromatic Diaromatics : Napthalene Monomethylnaphthalene Dimethylnapthalene Trimetylnaphthalene Tetramethylnapthalen C5-C10 H.Cs of Gasoline (Shape Selective Formation) Dimerization Condensation – Dehydrocyclization Reaction at the external surface of ZSM-5 CH4 COx H3C CH3 C=HC O CH=C H3C ║ CH3 C=CH-C-CH=C H3C CH3 C=HC CH=C Decomposition Reaction at the internal or external surface of Zeolite Reaction at the internal surface of ZSM-5 A reaction mechanism for the acetone conversion for C3-C4 or C5-C10 Aromatic hydrocarbons formation

6 Tracking Acuan untuk Mekanisme Reaksi
Fundamental Review Tracking Acuan untuk Mekanisme Reaksi Chang C.D dan A.J. Silvestri, 1977, The conversion of Methanol and Other O-Compounds to hydrocarbons over Zeolite Catalysts, Journal of Catalysis, 47, Chang, Clarence D., W. H. Lang, and W.K. Bell, 1981, "Molecular Shape-Selective Catalysis in Zeolite," in Catalysis of Organic Reactions edited by William R. Moser, Marcel Dekker Inc., 73-94 Xu, Teng, Eric J. Munson, and James F. Haw, 1994, "Toward a Systematic Chemistry of Organic Reactions in Zeolites: In Situ NMR Studies of Ketones," J. Am. Chem. Soc., 116, Hutchings, Graham J., Peter Johnston, Darren F. Lee, Ali Stair Warwick, Craig D. Williams and Mark Wilkinson, 1994, "The conversion of methanol and other O-compounds to hydrocarbons over zeolite β", Journal of Catalysis 147, Lucas, A., P. Canizares, A. Duran, A. Carrero, 1997, "Dealumination of HZSM-5 zeolites : Effect of steaming on acidity and aromatization activity," Appl. Catal. 154, 221 Stevens, Mark G., Denise Chen and Henry C. Foley, 1999, "Oxidized Cesium/Nanoporous Carbon Materials: Solid-Base Catalysts with Highly Dispersed Active Sites," J.C.S., Chemical Commun., Dehertog, W.J.H., G.F. Fromen, 1999, "A catalytic route for aromatics production from LPG", Applied Catalysis A: General Zaki, M.I., M. A. Hasan, F.A. Al-Sagheer, and L. Pasupulety, 2000, "Surface Chemistry of Acetone on Metal Oxides: IR Observation of Acetone Adsorption and Consequent Surface Reactions on Silica-Alumina versus Silica and Alumina," Langmuir, 16, Xu, M., W. Wang and Michael Hunger; 2003, " Formation of acetone enol on acidic zeolite ZSM-5 evidenced by H/D exchange", Chem Commun,

7 Fundamental Review Shift Selectivities Due to The Temp. Changes
(1,3,5 Trimetilbenzena) Shift Selectivities Due to The Temp. Changes Contoh : 2 (dua) Temp. 350 oC & 400 oC untuk produk Isobutene Aromatics Aliphatics COx Konversi Aseton & Sensitivitas Pergeseran Selektivitas Produk terhadap Suhu Reaksi (Sumber : Chang, Lang, & Bell, 1981, Catalysis of Organic Reactions by William R. Moser (Editor), Marcel Dekker Inc., 73-94)

8 The Framework of ZSM-5 structure
Fundamental Review Basic unit building block-AlO4 or SiO4 tetrahedra structure Ten-membered oxygen ring structure Secondary building block, Chains of 5- membered oxygen rings Secondary building block, Chains of 5- membered oxygen rings Straight channel, Elliptical openings 0.51 x 0.55 nm Vertically-cross sectional view Zig-zags channel, Circular openings x 0.56 nm The Framework of ZSM-5 structure

9 Fundamental Review Acidic protons migrate between the four oxygen atoms surrounding the tetrahedral aluminum center in the following fashion (Ryder, dkk., J. Phys. Chem. B 2000, 104, 6998) (Source : Sierka and Sauer, J. Phys. Chem. B 2001, 105, ) Ilustrasi difusi molekul senyawa Hidrokarbon diseputar mulut pori zeolit

10 Pore Dimension for some Zeolites
Fundamental Review Pore Dimension for some Zeolites Zeolite Pore size, nm Y 0.72 Mordenite 0.67 x 0.7 Offreite 0.64 ZSM-5 0.54 x 0.56 Ferrierite 0.43 x 0.55 Erionite 0.52 x 0.36

11 Objectives : To observe the Performance of HZSM-5 on Time on stream Stability (TOS) on the Acetone Reaction to get the high as possible acetone conversion, Aromatic Yield and Product Selectivity The influence of Si/Al ratio, Temperature during TOS Catalytic Tests

12 Experimental Set-up for Catalytic Test
Experimental Method N2 liquid drop Acetone fed by pump Wacetone?? Batangan Baja SS 316 Reaktor Pipa, 10 mm o.d., SS 316 19 cm Lokasi Pengukuran Suhu Unggun Katalis 35 cm 16 cm Quartz Wool Quartz sand Termokope1 Unggun Katalis 6 mm , i.d Flow meter Pump Pre-heater Acetone Quartz sand Electric furnace (1000W) Mixture of ZSM-5 & quartz sand N2 gas Stainless steel rod Wproduk cair?? Gas product Wproduk gas?? Ice - water bath Skema Diagram Penyusunan Katalis dalam Reaktor Pipa Experimental Set-up for Catalytic Test

13 Experimental conditions
Experimental Method Experimental conditions Catalyst : H-ZSM-5 Origin Japan (Commercial) Si/Al ratio Particle size (dp) 3 meter Weight of catalyst for bed 1 gram Quartz sand for blending 5 gram (10-15 mesh) Quartz sand for preheating 7 gram (10-15 mesh) Aceton (Cica) min 99.5% purity Carrier Gas N2

14 Data GC-FID ( Hewlett Packard ) for Analysis of liquid product
Experimental Method Data GC-FID ( Hewlett Packard ) for Analysis of liquid product Column DB-1 (100 % DimethylPolysloxane), non-polar 60 m x 0.25 mm I.D., 0.25 μ (film) JW : JW Carrier Nitrogen Oven 40 oC for 2 min; oC with heating rate at 2.5 o C/min Injector Split 1:100; 260 oC Detector FID 290 oC Nitrogen make up gas sebesar 30 ml/min The condition of GC-TCD for gaseous product Gas Chromatography GC 1 (organic) GC 2 (In-organic) Column Porapaq Q Mol. Sieve Carrier gas Helium Argon Column Oven 80 oC 60 oC Injection port 90 oC Detector (TCD)

15 Waktu retensi hasil deteksi chromatogram GC-FID kolom kapier DB-1
Experimental Method Waktu retensi hasil deteksi chromatogram GC-FID kolom kapier DB-1 Posisi keberadaan Peak dikonfirmasi dgn.GC-MS Larutan Standard murni/ campuran Peak No. Compounds Retention time, minute Calibration factor 1 Acetone ~6.25 2.2 2 C5-C6 Aliphatics  3 Benzene 7.98 4 Toluene (B.P oC) 9.87 5 Ethylbenzene (B.P. – 136.3oC) 11.85 6 m+p-Xylene (B.P. – oC) 12.1 7 o-Xylene (B.P oC) 12.6 8 C9-Aromatics group* 9 C10-Aromatics** 10 Naphthalene - 18.5 11 MMN group- 12 DMN 22,3 13 TMN * n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1-Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene ** 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4-Tetramethylbenzene

16 Waktu retensi produk gas menggunakan GC-TCD
Experimental Method Waktu retensi produk gas menggunakan GC-TCD Peak Component Retention time, min Calibration Factor Poropak - Q Mol.Sieve 1 CO2 0.9 2 C2H4 1.4 3 C2H6 1.8 4 C3H6 5.2 5 C4 12.8 6 H2 1.7 7 CH4 4.1 8 CO 4.7

17 Trimethylnaphtahlene (TMN), 23.3-24
Experimental Method Un-reacted Acetone C9-aromatik (Trimethylbenzene) , ' Toluene , 9.87‘ m+p-Xylene , 12.1‘ Benzene , 7.98' Ethanol-Absorben C5-C6 aliph., ‘ Ethylbenzene, 11.85‘ O-Xylene,12.6' C10-aromatik , ‘ Methylnaphtahlene (MMN) , ' Naphthalene, 8.5‘ Dimethylnaphtahlene (DMN) , sekitar 22.3' Trimethylnaphtahlene (TMN), Note Kandungan Hidro-karbon dalam sampel produk cair juga telah dikonfir-masi dengan GC-Mass Spectrosmeter Tipikal GC-FID Chromatogram sampel produk cair

18 Chromatogram resulted from GC using Poropak Q Column
Experimental Method Tipikal Chromatogram GC-TCD sampel produk gas H2 C2H4 N2 –Carrier gas C2H6 CH4 C3H6 CO C3H8 C4 Chromatogram resulted from GC using Poropak Q Column Chromatogram resulted from GC using Molecular Sieve Column

19 Metode Penelitian % Carbon ? % Carbon ? % C ?
Perhitungan konv.aseton, Fraksi Liquid, Fraksi Gas Metode Penelitian Aceton Feed 3cc during 34.5 min Aceton Feed [mg] Trap-1 = 1601 mg wt% (FID) Correction wt%(recalc) mg Product in Trap1 Acetone 0.373 0.8206 0.817 13.08 [mg] C5~C6 2.64 2.628 42.08 C6+-Aliphatics 8.68 8.641 138.35 Benzene 3.85 3.833 61.37 Toluene 23.14 23.037 368.83 Ethylbenzene 3.82 3.803 60.89 m+p-Xylene 24.12 24.013 384.45 o-Xylene 7.27 7.238 115.88 C9-Aromatics 19.24 19.155 306.67 C10-Aromatics 1.74 1.732 27.73 Naphthalene 1.33 1.324 21.20 2-Methylnaphthalene 1.21 1.205 19.29 1-Methylnaphthalene 0.17 0.169 2.71 Dimethylnaphthalene 1.92 1.911 30.60 Trimethylnaphthalene 0.495 0.493 7.89 Absorption Trap-2 : 9707 mgram Product in trap 2 [mg] 45.254 Component Area FID Factor % w Component, mg Ethanol 1.51E-07 7.79E-01 99.53 1.53E-07 2.00E-03 0.26 24.848 6.913E-08 8.09E-04 0.10 10.037 Toluen 8.36E-04 0.11 10.369 Gas Phase Products Product Gas [mg] 642.84 N2 rate 30 ml/min for 34.5 min vol/mmol ml/mmol Vol. N2 1035 ml Nitrogen mmol area Factor amount % mol Mol. Weight N2 1 73.94 43.50 28 1218 H2 196823 20685 1.07 0.63 2 CO 17485 17549 0.90 0.53 15 CO2 204423 187373 9.65 5.68 44 250 CH4 37351 12898 0.66 0.39 16 6 C2H4 43612 38184 1.97 1.16 32 C2H6 8111 6546 0.34 0.20 C3H6 61208 41300 2.13 1.25 42 53 C3H8 141126 92106 4.74 2.79 123 C4+ Aliphatics 158055 89269 4.60 58 157 Total output [mg] Acetone Conversion 98.37 % Liq. Oil Product Yield 72.40 wt % Gas Product Yield 27.60 % Carbon ? % Carbon ? % C ?

20 Selectivities &Yield Experimental Method Selectivities by %C
Interval of sample 0.58 h Acetone conversion 98.37 % Product composition weight in g % weight % carbon CO 14.89 0.67 0.31 CO2 249.83 11.21 3.31 CH4 6.25 0.28 0.23 C2H4 32.40 1.45 1.59 C2H6 5.95 0.27 0.29 C3H6 52.56 2.36 2.58 C3H8 122.81 5.51 6.03 C4+ Aliphatics 156.89 7.04 7.70 C5~C6 Aliphatics 42.08 1.89 2.07 C6+-Aliphatics 138.35 6.21 6.79 Benzene 61.37 2.75 3.01 Toluene 368.83 16.54 18.11 Ethylbenzene 60.89 2.73 2.99 m+p-Xylene 384.45 17.24 18.87 o-Xylene 115.88 5.20 5.69 C9-Aromatics 306.67 13.75 15.05 C10-Aromatics 27.73 1.24 1.36 Naphthalene 21.20 0.95 1.04 2-Methylnaphthalene 19.29 0.87 1-Methylnaphthalene 2.71 0.12 0.13 DMN 30.60 1.37 1.50 TMN 7.89 0.35 0.39 100.00 Selectivities by %C

21 Acetone conversion over HZSM-5 by various Si/Al mol ratio.
Results & Discussions Si/Al=25, TOS =17 h stable at ca.100% Conv. Si/Al=25 Si/Al=100 Si/Al=75 Acetone conversion over HZSM-5 by various Si/Al mol ratio. WHSV = 4 h-1, N2 carrier = 30 ml/min.

22 The stability of H-ZSM-5 Si/Al =25 on various reaction temperature
Results & Discussions TOS <= 17 h stable at ca.100% Conv. T=673 K T=723 K T=573 K T=623 K The stability of H-ZSM-5 Si/Al =25 on various reaction temperature

23 Yield of monoaromatic duing time on stream on various temperature
Results & Discussions TOS < 13 h, Yield > 60% T=673 K T=723 K T=573 K T=623 K Yield of monoaromatic duing time on stream on various temperature

24 Product Selectivity within 100 min with H-ZSM-5 Si/Al=25
Results & Discussions Diaromatik H-ZSM-5 → High Shape Selective for Aromatic Formations, Total Select. > 60 % Monoiaromatik Alifatik Product Selectivity within 100 min with H-ZSM-5 Si/Al=25 COx

25 Results & Discussions Monoiaromatik Monoiaromatik Monoiaromatik C4 Aliphatics C4 Aliphatics C4 Aliphatics Fig. 6 The change of monoaromatic and C4 aliphatics selectivity during the progressing of time on stream reaction Note The relative symmetry in the opposite direction between the increasing of C4 aliphatics and the decreasing of monoaromatic selectivity The shift selectivity between the change of monoaromatic and C4 aliphatics selectivity during TOS

26 Conclusions ZSM-5 with Si/Al = 25 is the high active and stable than the Si/Al ratio, it indicates that the reaction of acetone reaction required a high acid density on the surface of catalyst. The reaction on 673 K is a favorable temperature for acetone conversion toward aromatic products. The lower temperatures of reaction lead to rapid deactivation, and the higher temperatures tend to decline the yield/selectivity of aromatics products The formation of aromatic compounds come from the C4 aliphatics and big possibilities that the loss of activity of catalyst and shift selectivity are caused by coking which covers the surface acid sites of ZSM-5

27 Terima kasih atas perhatiannya

28 Terima kasih kpd. Prof. T. Kojima, Staffs & the Excellent Students, Faculty Engineering, Seikei University, Tokyo- Japan Prof. T. Tsutsui Applied Chemistry & Chem. Engineering, Kagoshima University, Kyushu-Japan Prof. Takao Masuda, Div. of Material Science and Eng., Graduate School of Eng., Hokkaido University, Sapporo, Japan

29 The surface area for fresh and used catalyst
Total area, m2/g Micropore area, m2/g HZSM-5 Fresh 321.8 209.4 Used 225.4 159.9 HNZ (protonated Nat. Zeolite) 294.4 248.2 235.3 155.8 15 wt%B2O3-HNZ 115.4 58.3 76.0 44.2

30 The powder of Fresh Catalyst, the white color
The change of color for the powder of used Catalyst to be black or dark brown

31 Effect of Boron oxide loading into HNZ catalyst on Product Reaction
5 wt% B2O3-HNZ 15 wt%B2O3-HNZ 25 wt%B2O3-HNZ Temperature [oC] 400 Conversion [%] 98.9 98.4 95.8 20.3 Product distribution (% w)  CO 0.31 0.63 0.65 0.36 CO2 2.93 3.66 5.45 4.85 CH4 0.21 0.27 0.30 0.10 C2H4 1.0 2.96 4.11 0.17 C2H6 0.24 0.00 C3H6 1.55 5.82 12.60 1.26 C3H8 6.90 4.02 1.84 C4 aliphatics 7.35 9.69 20.30 61.70 C3-C4 Hydrocarbons 15.80 19.53 34.74 62.96 Liquid Hydrocarbon 77.30 72.80 54.70 31.50

32 The comparation of the results due to the water addition into acetone feed
acetone + H2O (50% wt add) Temperature, [oC] 400 LHSV [h-1] 2.18 4.32 Conversion [%] 98.9 99.1 Product (wt %) Benzene 5.64 4.24 Toluene 21.12 18.26 Ethylbenzene 1.44 1.79 m+p-Xylene 15.38 16.01 o-Xylene 4.67 4.9 C9-Aromatics 7.22 9.36 Naphthalene 0.49 0.65 2-Methylnaphthalene 1.64 1 1-Methylnaphthalene 0.59 0.32 Dimethylnaphthalene 1.83 1.17 Trimethylnaphthalene 0.16 0.24

33 The change of acetone conversion along with Paraffin/olefin ratio during reaction over ZSM-5 (Si/Al=25) Reaction condition : Temperature = 673 K, P=0.13 MPa, WHSV= 4 g/g.h, N2 carrier = 30 ml/min


Download ppt "Time on Stream Stability of H-ZSM-5 Catalyst on"

Similar presentations


Ads by Google