Presentation is loading. Please wait.

Presentation is loading. Please wait.

Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional.

Similar presentations


Presentation on theme: "Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional."— Presentation transcript:

1 Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional Teknik Kimia Palembang, 19 Juli 2006 Oleh Setiadi or SMS Department Of Chemical Engineering Faculty Of Engineering - University Of Indonesia

2 Hidrokarbon C 1 - C 10 Aseton Aseton : senyawa organic polar yang dapat diproduksi dari materi hayati renewable mll. fermentasi, pirolisis, maupun new process via supercritical decomposition Kemampuan shape-selectivity ZSM-5 terletak pada bangunan struktur kristalnya yang diameter/bukaan pori sekitar 0,56 nm dan hampir homogen. Katalis ZSM-5 banyak digunakan untuk transformasi reaksi-reaksi hidrokarbon dibanding dgn. ZSM-5 digunakan reaksi senyawa organik polar C 1 : CH4 C 2 : C2H4, C2H6 C3 : C3H6, C3H8 C4 : C4H8, C4H10 C5 : C5H10, C6 : C6H6, C6 alifatik C7 : Toulena, Alifatik, C8 : Xylena, alifatik C9 : Mesitylene (1,3,5 TMB) C10 : Durene, Naphthalene ZSM-5 Proses Katalitik Introduction

3 Non-Renewable Route H2OH2O Biomass Materials CO 2 Fuel : LPG (C 3 -C 4 H.Cs), Gasoline(C 5 -C 10 H.Cs), Diesel Fuel, Kerosene, Avian Jet Fuel, etc Biomass derived liquid Fotosintesi s Fossil Resources – Crude Oils ( C 1 -C 40 ) Hydrocarbons Fuel Combustion Waste Transformation & Utilization Geological Time Frame Process (Millions years) biological activities Biological time frame The Concept Carbon Cycle Route for renewable biomass and non-renewable as the origins of hydrocarbons for fuels & chemicals ( developed from Kojima, 1998; Metzger & Eissen, 2004 dan Padabed et al.,2002 ) Renewable Route (The Yellow Arrows) CO 2 Un-converted CO 2 Introduction

4 Fossil Resources (Petroleum crude Oil) Refinery Process & Catalytic Cracking Unit (FCC) Biomass Materials Biomass-derived liquid from fermentation Products ( sagu, singkong, tetes tebu/molasses, 80 % Yield Limbah Tandan Kosong Sawit, dll.) Renewable Ethanol Acetone, Butanol C 1 -C 10 Aromatic Compounds  Fuel (Gasohol), ( O.N., RVP)  Petrochemicals Non-renewable Resources A Schematic Diagram of C 1 -C 10 Hydrocarbons Route from the Origin Target Compounds Biomass-Based Technology established ??? Catalytic Reaction Process? Catalyst ? HZSM-5 & Nat. Zeolite Reaction condition? Scope of this Research Work Minyak Nabati ( Sawit, Jarak, )

5 A reaction mechanism for the acetone conversion for C 3 -C 4 or C 5 -C 10 Aromatic hydrocarbons formation O ║ H 3 C- C-CH=C(CH 3 ) 2 Mesityl oxide (MSO) O OH ║ │ CH 3 C CH 2 C (CH 3 ) 2 Diacetone alcohol (DAA) O ║ (H 3 C) 2 C=CHCCH=C(CH 3 ) 2 phorone or diisopropylideneketone O ║ 2 [ H 3 C-C- CH 3 ] 2 molecules of Acetones Self Aldol condensation Dehydration - H 2 O Further self Aldol condensation + (CH 3 ) 2 CO - H 2 O In progress of reaction: Continued condensation, forming higher molecular weight species which may accumulate in pore channel and shutting down the reaction O isophorone Cracking inside the Pores at higher Temp > 350 o C C 3 -C 4 LPG Acetic acid 1,3,5- Trimethylben zene (Mesitylene) Monoaromatic : Benzene Xylene Toluene EthylBenzene C 9 monoaromatic C 10 monoaromatic Diaromatics : Napthalene Monomethylnapht halene Dimethylnapthale ne Trimetylnaphthale ne Tetramethylnapth alen C 5 -C 10 H.C s of Gasoline ( Shape Selective Formation ) Dimerization Condensation – Dehydrocyclization Reaction at the external surface of ZSM-5 CH4 COx H 3 C CH 3 C=HC O CH=C H 3 C ║ CH 3 C=CH-C-CH=C H 3 C CH 3 C=HC CH=C H 3 C CH 3 Decomposition Reaction at the internal or external surface of Zeolite Reaction at the internal surface of ZSM-5 Fundamental Review

6 Chang C.D dan A.J. Silvestri, 1977, The conversion of Methanol and Other O-Compounds to hydrocarbons over Zeolite Catalysts, Journal of Catalysis, 47, Chang, Clarence D., W. H. Lang, and W.K. Bell, 1981, "Molecular Shape-Selective Catalysis in Zeolite," in Catalysis of Organic Reactions edited by William R. Moser, Marcel Dekker Inc., Xu, Teng, Eric J. Munson, and James F. Haw, 1994, "Toward a Systematic Chemistry of Organic Reactions in Zeolites: In Situ NMR Studies of Ketones," J. Am. Chem. Soc., 116, Hutchings, Graham J., Peter Johnston, Darren F. Lee, Ali Stair Warwick, Craig D. Williams and Mark Wilkinson, 1994, "The conversion of methanol and other O-compounds to hydrocarbons over zeolite β", Journal of Catalysis 147, Lucas, A., P. Canizares, A. Duran, A. Carrero, 1997, "Dealumination of HZSM-5 zeolites : Effect of steaming on acidity and aromatization activity," Appl. Catal. 154, 221 Stevens, Mark G., Denise Chen and Henry C. Foley, 1999, "Oxidized Cesium/Nanoporous Carbon Materials: Solid-Base Catalysts with Highly Dispersed Active Sites," J.C.S., Chemical Commun., Dehertog, W.J.H., G.F. Fromen, 1999, "A catalytic route for aromatics production from LPG", Applied Catalysis A: General Zaki, M.I., M. A. Hasan, F.A. Al-Sagheer, and L. Pasupulety, 2000, "Surface Chemistry of Acetone on Metal Oxides: IR Observation of Acetone Adsorption and Consequent Surface Reactions on Silica-Alumina versus Silica and Alumina," Langmuir, 16, Xu, M., W. Wang and Michael Hunger; 2003, " Formation of acetone enol on acidic zeolite ZSM-5 evidenced by H/D exchange", Chem Commun, Tracking Acuan untuk Mekanisme Reaksi Fundamental Review

7 Shift Selectivities Due to The Temp. Changes Contoh : 2 (dua) Temp. 350 o C & 400 o C untuk produk Isobutene Aromatics Aliphatics COx (1,3,5 Trimetilbenzena) Konversi Aseton & Sensitivitas Pergeseran Selektivitas Produk terhadap Suhu Reaksi (Sumber : Chang, Lang, & Bell, 1981, Catalysis of Organic Reactions by William R. Moser (Editor), Marcel Dekker Inc., 73-94) Fundamental Review

8 The Framework of ZSM-5 structure Ten-membered oxygen ring structure Zig-zags channel, Circular openings 0.54 x 0.56 nm Straight channel, Elliptical openings 0.51 x 0.55 nm Secondary building block, Chains of 5- membered oxygen rings Vertically -cross sectional view Basic unit building block-AlO4 or SiO4 tetrahedra structure Secondary building block, Chains of 5- membered oxygen rings Fundamental Review

9 Ilustrasi difusi molekul senyawa Hidrokarbon diseputar mulut pori zeolit (Source : Sierka and Sauer, J. Phys. Chem. B 2001, 105, ) Acidic protons migrate between the four oxygen atoms surrounding the tetrahedral aluminum center in the following fashion (Ryder, dkk., J. Phys. Chem. B 2000, 104, 6998) Fundamental Review

10 Zeolite Pore size, nm Y0.72 Mordenite0.67 x 0.7 Offreite0.64 ZSM x 0.56 Ferrierite0.43 x 0.55 Erionite0.52 x 0.36 Pore Dimension for some Zeolites Fundamental Review

11 Objectives : To observe the Performance of HZSM-5 on Time on stream Stability (TOS) on the Acetone Reaction to get the high as possible acetone conversion, Aromatic Yield and Product Selectivity The influence of Si/Al ratio, Temperature during TOS Catalytic Tests

12 Batangan Baja SS 316 Reaktor Pipa, 10 mm o.d., SS cm Lokasi Pengukuran Suhu Unggun Katalis 35 cm 16 cm Quartz Wool Quartz sand Termokope1 Unggun Katalis Quartz Wool 6 mm, i.d Reaktor Pipa, 10 mm o.d., SS 316 Skema Diagram Penyusunan Katalis dalam Reaktor Pipa N 2 gas Quartz sand Mixture of ZSM-5 & quartz sand Flow meter Pump Stainless steel rod Electric furnace (1000W) Pre- heater Ice - water bath Gas product Acetone N2N2 liquid drop Acetone fed by pump Experimental Method Experimental Set-up for Catalytic Test W acetone ?? W produk cair ?? W produk gas ??

13 Experimental conditions Catalyst:H-ZSM-5 Origin:Japan (Commercial) Si/Al ratio: Particle size (d p ): 3  meter Weight of catalyst for bed:1 gram Quartz sand for blending:5 gram (10-15 mesh) Quartz sand for preheating:7 gram (10-15 mesh) Aceton (Cica):min 99.5% purity Carrier Gas:N2N2 Experimental Method

14 Data GC-FID ( Hewlett Packard ) for Analysis of liquid product The condition of GC-TCD for gaseous product Column DB-1 (100 % DimethylPolysloxane), non-polar 60 m x 0.25 mm I.D., 0.25 μ (film) JW : JW CarrierNitrogen Oven40 o C for 2 min; o C with heating rate at 2.5 o C/min InjectorSplit 1:100; 260 o C DetectorFID 290 o C Nitrogen make up gas sebesar 30 ml/min Gas ChromatographyGC 1 (organic)GC 2 (In-organic) ColumnPorapaq QMol. Sieve Carrier gasHeliumArgon Column Oven80 o C60 o C Injection port90 o C80 o C Detector (TCD)90 o C80 o C Experimental Method

15 Waktu retensi hasil deteksi chromatogram GC-FID kolom kapier DB-1 Posisi keberadaan Peak dikonfirmasi dgn.GC-MS Larutan Standard murni/ campuran Peak No.CompoundsRetention time, minuteCalibration factor 1Acetone~ C 5 -C 6 Aliphatics Benzene Toluene (B.P o C) Ethylbenzene (B.P. – o C) m+p-Xylene (B.P. – o C) o-Xylene (B.P o C) C 9 -Aromatics group* C 10 -Aromatics** Naphthalene MMN group DMN22,31 13TMN * n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1- Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene ** 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4- Tetramethylbenzene Experimental Method

16 Waktu retensi produk gas menggunakan GC-TCD PeakComponentRetention time, minCalibration Factor Poropak - QMol.Sieve 1CO C2H4C2H C2H6C2H C3H6C3H C4C H2H CH CO

17 Tipikal GC-FID Chromatogram sampel produk cair Experimental Method Un-reacted Acetone C 9 -aromatik (Trimethylbenzene), ' Toluene, 9.87‘ m+p-Xylene, 12.1‘ Benzene, 7.98' Ethanol-Absorben C 5 -C 6 aliph., ‘ Ethylbenzene, 11.85‘ O-Xylene,12.6' C 10 -aromatik, ‘ Methylnaphtahlene (MMN), ' Naphthalene, 8.5‘ Dimethylnaphtahlene (DMN), sekitar 22.3' Trimethylnaphtahlene (TMN), Note Kandungan Hidro- karbon dalam sampel produk cair juga telah dikonfir- masi dengan GC- Mass Spectrosmeter

18 Tipikal Chromatogram GC-TCD sampel produk gas CH 4 C4C4 CO C3H8C3H8 H2 C2H6C2H6 C2H4C2H4 C3H6C3H6 N2 – Carrier gas Chromatogram resulted from GC using Molecular Sieve Column Chromatogram resulted from GC using Poropak Q Column Experimental Method

19 Aceton Feed 3cc during 34.5 min. Aceton Feed [mg] Trap -1 = 1601 mg wt% (FID) Correctionwt%(recalc)mgProduct in Trap Acetone [mg] C 5 ~C C6+-Aliphatics Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene C 9 -Aromatics C 10 -Aromatics Naphthalene Methylnaphthalene Methylnaphthalene Dimethylnaphthalene Trimethylnaphthalene Absorption Trap-2 : 9707mgram Product intrap 2 [mg] ComponentAreaFID Factor% wComponent, mg Ethanol E E Acetone E E Benzene E E Toluen E E Gas Phase Products Product Gas [mg] N 2 rate30ml/min for34.5minvol/mmol ml/mmol Vol. N21035mlNitrogen mmol ComponentareaFactoramount% molmmolMol. Weightmg N2N H2H CO CO CH C2H4C2H C2H6C2H C3H6C3H C3H8C3H C 4 + Aliphatics Total output [mg] Acetone Conversion98.37%Liq. Oil Product Yield72.40wt % Gas Product Yield27.60wt % Metode Penelitian % Carbon ? % C ? Perhitungan konv.aseton, Fraksi Liquid, Fraksi Gas

20 Experimental Method Selectivities &Yield Interval of sample 0.58h Acetone conversion 98.37% Product composition weight in g% weight% carbon CO CO CH C2H4C2H C2H6C2H C3H6C3H C3H8C3H C 4+ Aliphatics C 5 ~C 6 Aliphatics C 6 +-Aliphatics Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene C 9 -Aromatics C 10 -Aromatics Naphthalene Methylnaphthalene Methylnaphthalene DMN TMN Selectivities by %C

21 Results & Discussions Acetone conversion over HZSM-5 by various Si/Al mol ratio. WHSV = 4 h -1, N 2 carrier = 30 ml/min. Si/Al=25, TOS =17 h stable at ca.100% Conv. Si/Al=25 Si/Al=75 Si/Al=100

22 The stability of H-ZSM-5 Si/Al =25 on various reaction temperature TOS <= 17 h stable at ca.100% Conv. T=673 K T=723 K T=623 K T=573 K Results & Discussions

23 Yield of monoaromatic duing time on stream on various temperature TOS 60% T=723 K T=673 K T=623 K T=573 K Results & Discussions

24 Product Selectivity within 100 min with H-ZSM-5 Si/Al=25 Diaromatik COx Monoiaromatik Alifatik H-ZSM-5 → High Shape Selective for Aromatic Formations, Total Select. > 60 % Results & Discussions

25 Fig. 6 The change of monoaromatic and C 4 aliphatics selectivity during the progressing of time on stream reaction Note The relative symmetry in the opposite direction between the increasing of C 4 aliphatics and the decreasing of monoaromatic selectivity The shift selectivity between the change of monoaromatic and C 4 aliphatics selectivity during TOS Monoiaromatik C4 Aliphatics Monoiaromatik C4 Aliphatics Results & Discussions

26 Conclusions ZSM-5 with Si/Al = 25 is the high active and stable than the Si/Al ratio, it indicates that the reaction of acetone reaction required a high acid density on the surface of catalyst. The reaction on 673 K is a favorable temperature for acetone conversion toward aromatic products. The lower temperatures of reaction lead to rapid deactivation, and the higher temperatures tend to decline the yield/selectivity of aromatics products The formation of aromatic compounds come from the C 4 aliphatics and big possibilities that the loss of activity of catalyst and shift selectivity are caused by coking which covers the surface acid sites of ZSM-5

27

28 Terima kasih kpd. Prof. T. Kojima, Staffs & the Excellent Students, Faculty Engineering, Seikei University, Tokyo- Japan Prof. T. Tsutsui Applied Chemistry & Chem. Engineering, Kagoshima University, Kyushu-Japan Prof. Takao Masuda, Div. of Material Science and Eng., Graduate School of Eng., Hokkaido University, Sapporo, Japan

29 The surface area for fresh and used catalyst Catalyst Total area, m 2 /g Micropore area, m 2 /g HZSM-5Fresh Used HNZ (protonated Nat. Zeolite) Fresh Used wt%B 2 O 3 -HNZFresh Used

30 The powder of Fresh Catalyst, the white color The change of color for the powder of used Catalyst to be black or dark brown

31 Effect of Boron oxide loading into HNZ catalyst on Product Reaction Catalyst HNZ 5 wt% B 2 O 3 -HNZ 15 wt%B 2 O 3 - HNZ 25 wt%B 2 O 3 - HNZ Temperature [ o C] 400 Conversion [%] Product distribution (% w) CO CO CH C2H4C2H C2H6C2H C3H6C3H C3H8C3H C 4 aliphatics C 3 -C 4 Hydrocarbons Liquid Hydrocarbon

32 FeedAcetoneacetone + H 2 O (50% wt add) Temperature, [ o C]400 LHSV [h -1 ] Conversion [%] Product (wt %) Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene C9-Aromatics Naphthalene Methylnaphthalene Methylnaphthalene Dimethylnaphthalene Trimethylnaphthalene The comparation of the results due to the water addition into acetone feed

33 The change of acetone conversion along with Paraffin/olefin ratio during reaction over ZSM-5 (Si/Al=25) Reaction condition : Temperature = 673 K, P=0.13 MPa, WHSV= 4 g/g.h, N2 carrier = 30 ml/min


Download ppt "Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional."

Similar presentations


Ads by Google