Presentation is loading. Please wait.

Presentation is loading. Please wait.

E-Science paradigm for hadron collider physics Kihyeon Cho High Energy physics Team KISTI APCTP LHC-Physics Workshop Konkuk University, Seoul, Korea August.

Similar presentations


Presentation on theme: "E-Science paradigm for hadron collider physics Kihyeon Cho High Energy physics Team KISTI APCTP LHC-Physics Workshop Konkuk University, Seoul, Korea August."— Presentation transcript:

1 e-Science paradigm for hadron collider physics Kihyeon Cho High Energy physics Team KISTI APCTP LHC-Physics Workshop Konkuk University, Seoul, Korea August 25~27,

2 Kihyeon Cho Contents E-Science paradigm? Theory-Experiment Theory-Computing Experiment-Computing Summary 2

3 Kihyeon Cho 3 이론 실험 컴퓨팅 Tony Hey (MS) Effects Experimental Science Theoretical Science Computational Science e-Science -Thousand Years ago -Experimental Science - description of natural phenomena -Last few hundred years -Theoretical Science -Newton ’ s Laws, Maxwell ’ s Equations … -Last few decades -Computational Science -simulation of complex phenomena -Today -e-Science -Data Centric Science -unify theory, experiment, and simulation 이론 실험 컴퓨팅 HPC and Information Management are Key Technologies to support e-Science Revolution e-Science paradigm? Hardness

4 Kihyeon Cho E-Science paradigm e-Science TheoryComputingExperiment => Hadron Collider Physics (CDF, LHC etc.) 4

5 Kihyeon Cho Computing Experiment Theory Feed back and tools Supercomputer e-HEP => To study Heavy Flavor Physics e-Science E-Science paradigm 5

6 Kihyeon Cho 6

7 Theory-Experiment 7 e-Science Theory Computing Experime nt

8 Kihyeon Cho Theory-Experiment To develop the fusion system of pheno- menology and data analysis Based on this system, we apply Monte Carlo system for experiments. To apply this system to hadron collider experiments in order to study the standard model (SM) and new physics (NP). To apply new tools to future experiments Belle-II, LHC, etc. 8

9 Kihyeon Cho Example) Theory-experiment Braaten, Kniehl and J.Lee 9

10 Kihyeon Cho Example) Theory-Computing (cont’d) Braaten, Kniehl and J.Lee 10

11 Kihyeon Cho 11 Chaehyun Yu Example) Theory-Computing (cont’d) =>More accurate results are needed

12 Kihyeon Cho Tools for future experiment Belle-II DH with AMGA => LHC 12

13 Theory-Computing 13 e-Science Theory Computing Experime nt

14 Kihyeon Cho Theory-Computing To use supercomputer to study phenomenology The 4 th supercomputer at KISTI ☞ IBM Gaia system ☞ cluster system Tachyon To develop parallellization and optimization for the phenomenology code Based on OpenMP to use Gaia system Based on MPI Libraryto use Tachyon 14

15 Kihyeon Cho Results of Theory-Computing Higgs Boson research on MSSM (S.W.Ham) To use supercomputer at KISTI ( ) Acknowledgement to KISTI ▶ Publications list (2008) ☞ Higgs bosons of a supersymmetric E(6) model at the Large Hadron Collider, S.W. Ham ( 제 1 저자 ), J.O. Im, E.Y. Yoo, S.K. Oh, JHEP 0812:017 (2008). ☞ Higgs bosons of a supersymmetric U(1)' model at the ILC, S.W. Ham ( 제 1 저자 ), E.J. Yoo, S.K. Oh, D. Son, Phys. Rev. D77, (2008). ☞ Neutral scalar Higgs bosons in the USSM at the LHC, S.W. Ham ( 제 1 저자 ), Taeil Hur, P. Ko, S.K. Oh, J. Phys. G35, (2008). ▶ Publications list (2007) 과제명 : 비 최소 초 대칭 모형에서 힉스 보존에 관한 연구 ☞ Higgs bosons of the NMSSM with explicit CP violation at the ILC, S.W. Ham ( 제 1 저자 ), S.H. Kim, S.K. Oh, D. Son, Phys. Rev. D76, (2007). ☞ Electroweak phase transition in MSSM with U(1)' in explicit CP violation scenario, S.W. Ham ( 제 1 저자 ), S.K. Oh, Phys. Rev. D76, (2007). ☞ Electroweak phase transitions in the MSSM with an extra U(1)', S.W. Ham ( 제 1 저자 ), E.J. Yoo, S.K. Oh, Phys. Rev. D76, (2007). ☞ Explicit CP violation in a MSSM with an extra U(1)', S.W. Ham ( 제 1 저자 ), E.J. Yoo, S.K. Oh, Phys. Rev. D76, (2007). ☞ Phase transition in a supersymmetric axion model, S.W. Ham ( 제 1 저자 ), S.K. Oh, Phys. Rev. D76, (2007). 15

16 Kihyeon Cho Result of theory-computing 16

17 Kihyeon Cho e-Science Service Resource Linux OS LCG/gLite Daejeon Supercomputer, Cluster Busan Storage Gwangju Visualization KREONET Seoul GLORIAD Belle/Belle2 ALICE Theory CDF … … AIX OS(IBM) KISTI KISTI CA 11 Middleware LHC 17

18 Kihyeon Cho Tevatron 18 S.W.Ham

19 Kihyeon Cho Result of Theory-Computing 19

20 Kihyeon Cho Result of Theory-Computing (cont’d) 20

21 Experiment-Computing e-Science for high energy physics 21 e-Science Theory Computing Experime nt

22 Kihyeon Cho 컴퓨팅 실험 e-Science 연구환 경 구축 및 활용연구 Experiment-Theory E-Science for High Energy Physics (e-HEP) => Heavy Flavor Physics 22 K.Cho, Comp. Phys. Com, 177, 247 (2007)

23 Kihyeon Cho Heavy Flavor Physics Trends High Energy Accelerator (up to 14TeV) From 10.56GeV [Y(4S)] to 14TeV => Data Production High cross section => Lots of data [O(PByte/year)] From e+e- to Hardon Collider => Data Processing More Data From Belle to Super Belle (50X) => Data Processing More Collaborations From 200 to 2,000 collaborations  Data Analysis Collaborative => e-Science 23

24 Kihyeon Cho Concorde (15 Km) Balloon (30 Km) CD stack with 1 year LHC data! (~ 20 Km) Mt. Blanc (4.8 Km) 2000-present2010s Lepton Collider Hadron Collider Method - Belle. 1 PByte (1ab -1 total) - BaBar - CDF. 2 PByte (4.5fb -1 total) - D0 - Cluster - Grid - Belle-II. 5~10 PByte/year -LHCb. 0.2~1 PByte/year -CMS. 5~10 PByte/year -ALICE - Grid - e-Science Production Data Size 24 K.Cho and H. Kim, hep-ex

25 Kihyeon Cho The goal of e-Science To study any research anytime and anywhere 25

26 Kihyeon Cho 26 e-Science for HEP Data Production Data Processing Data Analysis To study High Energy Physics anytime, anywhere even if we are not on-site laboratories Virtual Laboratory enables us to research as if we were on-site. 31 2

27 Kihyeon Cho 27 The components of e-Science for HEP Data Analysis collaborative Data Processing Data Production Data Center EVO (Enabling Virtual Organization) Grid Farm Pacific CDF Analysis Farm CDF Grid Computing Center Remote Shifts On-line (RCR) Off-line (SAM DH) 1 3 An example => CDF 2 On-SiteKISTI K.Cho, JKPS 53, 1187 (2008)

28 Kihyeon Cho 28 High Energy Physics Team at KISTI PPNP research community France-Korea PPL (LIA) B physics research => To proble Standard Model 2009~ e-HEP GLORIAD(10 G) NSDC farm e-Science Grid D. Production D. Processing Data Analysis RCR CDF Belle/Belle-II ALICE Tier2 ILC R&D To study HEP ~2008 Supercom Service Theory Lepton Collider (Belle/II) Hardon Collider (CDF) Standard Model New Physics

29 Kihyeon Cho 29 High Energy Physics Team at KISTI 2007 ~ e-Science Grid FKPPL VO Farm(IN2P3,Fr.) & LCG CAF (CDF Analysis Farm) (IN2P3,France) Pacific CAF (AS, Taiwan), KEK Farm (KEK, Japan) North America CAF (Fermilab, USA) EU USA Asia Pacific CAF, Visuallization Using e-HEP, SM, B-physics KREONET, GLORIAD, Supercomputer & NSDC farm 10 Enable Discovery KISTI Belle/Belle-II CDF e-HEP Belle-II DH leader

30 Kihyeon Cho Search for Study for Production Mechanism CDF B Physics KISTI Chaehyun Yu 30

31 Kihyeon Cho 31 B=B +, K=K + B=B 0, K=K *0 B=B S, K=φ B → J/ψ K(1.008±0.035)*10 -3 (1.33±0.06)*10 -3 (9.2±3.3)*10 -4 B → ψ(2s)K(6.48 ± 0.35) *10 -4 (7.2 ±0.8) *10 -4 (4.8±1.4)*10 -4 B → J/ψ K π + π - (1.07 ± 0.19) *10 -3 (6.6 ±2.2) *10 -4 B → ψ(2s)K π + π - (1.9 ± 1.2) *10 -3 Could be a good method to separate production mechanism? – Internal pop up v.s. Higher resonance state ? – X(3872) or ψ(2s) -> J/Ψ π+π- ? Br(B 0  J/ π + π - K* 0 ) / Br(B 0  (2s)(J/ π + π - ) K* 0 ) Br(B +  J/ π + π - K + ) / Br(B +  (2s)(J/ π + π - ) K + ) Br(B S  J/ π + π -  ) / Br(B S  (2s)(J/ π + π - )  ) J/  K*0, K+, π π, K Charmonium J/ π + π - K*0, K+,  Bs -> J/Ψ Φ π + π -

32 Kihyeon Cho Measured Br(B 0  J/Ψ Ks) = 4.45*10 -4 Theory exp. Br(B s  J/Ψ Ks) ~ 2.0*10 -5 Yield (B0  J/ΨKs) ~ 2630 (0.8fb -1 ) : measur Yield (B0  J/ΨKs) ~ (5.0fb -1 ) : expect Expected Yield (Bs  J/Ψ 5.0fb -1 ~ * 0.3(f s /f b ) * 2/4.45* ~ 200 * B 0 contamination, BG reduction Search for Bs  CDF II 32

33 Kihyeon Cho e-Science for High Energy Physics KBS 대전 (2008.7) ScienceTV (2009.1) Achievements KBS 전국 (2008.7) 33

34 Kihyeon Cho 34 언론 홍보

35 Kihyeon Cho Summary 35 Using the 21st centry concept of e-Science paradigm, we combine experiment, theory and computing for more efficient research process in hadron collider physics. The construction of this kind of new system of experiment, theory and computing can provide new reserach paradigm in other science areas.

36 Thank you 36


Download ppt "E-Science paradigm for hadron collider physics Kihyeon Cho High Energy physics Team KISTI APCTP LHC-Physics Workshop Konkuk University, Seoul, Korea August."

Similar presentations


Ads by Google