Presentation is loading. Please wait.

Presentation is loading. Please wait.

 ATOMS AND NUCLEON DENSITY DISTRIBUTIONS 1. Sources of information on V  N : 1.A Strangeness exchange reactions 1.B Associated production of Σ 1.C 

Similar presentations


Presentation on theme: " ATOMS AND NUCLEON DENSITY DISTRIBUTIONS 1. Sources of information on V  N : 1.A Strangeness exchange reactions 1.B Associated production of Σ 1.C "— Presentation transcript:

1  ATOMS AND NUCLEON DENSITY DISTRIBUTIONS 1. Sources of information on V  N : 1.A Strangeness exchange reactions 1.B Associated production of Σ 1.C  N scattering 2. Σ atoms and nucleon densities  p,  n

2 Strangeness exchange reaction p  - P K  P, K   ,  P  + θ

3 Π+ spectrum in the (K-,π+) Brookhaven experiments. V Σ (r)=V Σ0 θ(R-r) V Σ0 =20 MeV V Σ0 =10 MeV V Σ0 = - 10/20 MeV R. Sawafta, Nucl. Phys. A585, 103c (1995); S.Bart et al., Phys.Rev.Lrtt. 83, 5238 (1999). JD and J.Rozynek, Acta Phys. Pol. 29B, 2147 (1998).

4 Associated production p  - P  P,   K ,  P K+ θ

5 Kaon spectrum from (π-,K+) reaction on 48Si (KEK) V Σ (r)=V Σ0 θ(R-r) A: V Σ0 = MeV B: V Σ0 = + 20 MeV C: V Σ0 = + 40MeV H.Noumi et al., Phys.Rev.Lett. 89, JD and J,Rozynek, Aca Phys.Pol. B35,2303 (2004).

6 The s.p. potential of  in nuclear matter. Lane V  (k  ) = V 0 (k  ) + V  (k  )t  T A /A (T A =  t N ) Lane V   (k  ) = V 0 (k  )  ½V  (k  )  (  = [N-Z]/A)

7 Pion spectra from (K-,  -) and (K-,  ) reactions on 9Be R.Sawafta, Nucl.Phys. A585, 103c (1995).

8 The Nijmegen  N Interaction V  N V  N (models D, F, SC, NSC ) V  N (  ) (effective interaction) Yamamoto et al. Progr.Theor.Phys. Suppl. 117, 241 (1994) LOB V()V() JD Phys.ReV.C 60, (1992)

9 V 0 for Nijmegen models D,F,SC,NSC JD Nucl.Phys. A69158c (2001).

10 V_\tau for Nijmegen -” - JD Acta Phys.Pol. B36 (2005) – in press V  for Nijmegen models D,F,SC,NSC

11 Σ ATOMS Coulomb Coulomb + strong Γ ε Γ Γ

12 Σ Atoms { -(h 2 /2  )  -V C (r)+V  (r)+iW  (r) }  = (E-iΓ/2)  LDA V  (  (r))+iW  (  (r))  –  { -(h 2 /2  )  -V C (r) }  0 = E 0  0 energy shift  = E o - E width    ATOMS  JD, J.Rozynek, G.S.Agnostatos, Eur.Phys.Journ.A 14, 125 (2002).

13 Σ Pb atoms and nucleon densities  p,  n R.J.Powers et al., Phs.RevC 47, 1263 (1993). JD, J.Rozynek,G.S.Anagnostatos, Eur.Phys.J.A 25, 137 (2005). In  Pb atom: {n = 10, l = 9}  {n = 9, l = 8}

14 , R²,  R² in the circular n=9 Σ orbit in 208Pb

15 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F D , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.

16 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F D (B) V  = 0F D , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.

17 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F D (B) V  = 0F D _ (C)  p   p = (Z/N)  n F D , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.

18 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F D (B) V  = 0F D _ (C)  p   p = (Z/N)  n F D _ _ _ (D)  p   ̃ p =  p +   p F D , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.

19 HF densities  p,  n and the modified densities and

20 s (A) HF   n,  p __ (C)  p   p = Z/N)  n __ (D)  p   ̃ p =  p +  _ [fm] Mean square radia of charge, proton, and neutron distributions in Pb

21 α( r ) = [ρ p ( r )– ρ n ( r )]/ρ( r ) in 208Pb (N – Z)/A

22 Summary 1.The analysis of the new strangeness exchange and associated production data indicates that the  s.p. potential V  inside the nuclear core is repulsive. * 2.Among the Nijmegen models of the  interaction only model F leads to a V  repulsive at nuclear matter densities appearing inside nuclei. 3.Assuming that model F is a realistic picture of the  interaction, the analysis of the  atomic data leads to information on  n,  p at the nuclear periphery. Astrophysical consequences: stiffer EOS  greater masses of neutron stars

23 HF densities and the modified proton density

24 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F SC , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.

25 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F SC (B) V  = 0F S.C , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.

26 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F SC (B) V  = 0F S.C _ (C)  p   p = (Z/N)  n F SC , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.

27 V  N  [MeV]  [MeV]  u [MeV] 22 Experiment 422    3 (A) HF   n,  p F SC (B) V  = 0F S.C _ (C)  p   p = (Z/N)  n F SC _ _ _ (D)  p   ̃ p =  p +   p F SC , ,  u in 208Pb calculated with the indicated densities and  N interaction models with the corresponding  ² values and the experimental data.


Download ppt " ATOMS AND NUCLEON DENSITY DISTRIBUTIONS 1. Sources of information on V  N : 1.A Strangeness exchange reactions 1.B Associated production of Σ 1.C "

Similar presentations


Ads by Google